€ seEc eDGE

Digital Security to the Edge

EMSPARK™ Suite

Corelockr™ Cryptographic AP/

January 25, 2024 | Version 3.1

THIS DOCUMENT IS PROVIDED BY SECeDGE™. THIS DOCUMENT, ITS CONTENTS, AND THE SECURITY
SYSTEM DESCRIBED SHALL REMAIN THE EXCLUSIVE PROPERTY OF SECeDGE.

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

1. TABLE OF CONTENTS

1. TABLE OF CONTENTS

2. INTRODUCTION

21. Philosophy
3. ARCHITECTURE

3.1. Client process

3.2. Corelockr™ Cryptographic API
3.3. CorelockrTM Cryptographic Protocol (CCP)
3.4. CorelLockrTM Session API
3.5. Corelockr™ API
3.6. CorelLockrTM Service

3.7. CorelockrTM Cryptographic Executor (CCE)
3.8. Key Store
4. CONCEPTS

41. Handle
4.2. CorelockrTM Cryptographic Executor (CCE)
4.3. Key
4.4. Key Handle 10
4.5. Key Blob 10
4.6. Key Loading N
4.7. Key Store 1l

471. Password Objects I
4.8. Data Objects I
4.9. Operation 12
4.10.Key Types 12
4.11. Hash Algorithms 14
5. TYPES AND CONSTANTS 15

© © © O 00 0 0 W W 0 N N NOo onN

51. Header File 15
5.2. Key Attributes 15
5.3. Required Key Attributes to Create a Key 18
5.4. Required Key Attributes When Importing Keys 21
5.5. Algorithms 22

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 2

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic AP

EDES-0001-Rev E.

5.6. Operation Modes 26
6. CORELOCKR SESSION API 26
6.1. Header Files 26
6.2. Sessions, Threads and General Concepts 26
6.3. Session Opening and Closing 28
6.31. clrcOpenSession 28
6.32. clrcOpenSessionEx 28
6.3.3. clrcCloseSession 30
7. CORELOCKR™ CRYPTOGRAPHIC API 30
7.1. General Concepts 30
7.11. Basic Types 30
7.1.2. Blocking Interface 30
7.1.3. Error Handling 30
7.2. Key Loading 33
7.21. clrcUnloadKey 33
7.22. clrcimportKey 33
7.23. clrcCreateKey 34
7.24. clrcSaveOpaqueKeyEx 35
7.25. clrcSaveOpaqueKey 36
7.3. Key Export 37
7.31. clrcGetAttribute 37
7.32. clrcGetAllAttributes 38
7.4. Key Stores 39
7.4.1. clrcKeyStorekExists 39
7.4.2. clrcLoadNamedKey 39
7.4.3. clrcSaveNamedKey 40
7.4.4. clrcDeleteNamedKey 4]
7.45. clrcGetNextKey 4]
7.4.6. clrcGetKeyPasswordObject 43
7.5. Password Objects 44
751 clrcCreatePasswordObject 44
75.2. clrcLoadPasswordObject 45
75.3. clrcUnloadPasswordObject 45
75.4. clrcDeletePasswordObject 46
755. clrcChangePasswordObject 47
7.6. Cryptographic Operations 48

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 3

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic AP

7.6.]. clrcCreateOperation

EDES-0001-Rev E.

48

49

7.6.2. clrcFreeOperation

49

7.6.3. clrcResetOperation
7.6.4. clrcCloneOperation

50

7.7. Hashing

50

7.7). clrcHashInit

50

5]

7.7.2. clrcHashUpdate
7.7.3. clrcHashFinal

52

7.8. Symmetric Cryptography Functions
7.81. clrcSymmetricinit

52

53

7.8.2. clrcSymmetricUpdate

53

7.8.3. clrcSymmetricFinal

54

7.9. MAC functions

55

791. clrcMaclnit

55

792. clrcMacUpdate

56

7.9.3. clrcMacFinal

57

7.10. Authenticated Encryption

58

710.1. clrcAEInit

58

7.10.2. clrcAEUpdateAAD

59

710.3. clrcAEUpdate

59

7.10.4. clrcAEEncryptFinal

60

7.10.5. clrcAEDecryptFinal

6l

62

7.1. Asymmetric Signature Functions

62

711 clrcSign
71.2. clrcVerify

63

7.12. Asymmetric Encryption Functions

64

7121, clrcAsymmetricEncrypt

64

66

712.2. clrcAsymmetricDecrypt

67

7.13.Key Derivation
713.1. clrcDeriveValue

67

7.13.2. clrcDeriveKey

69

714.Random numbers

70

7141. clrcGetRandom

70

70

7.15.0paqgue Object Decoding
715.1. clrcCreateOpaqueObjectCtx

70

715.2. clrcFreeOpaqueObjectCtx

71

715.3. clrcOpaqueObjectinit

71

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 4

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic AP

7.15.4.
7.15.5.
7.16. Attribute Manipulation Routines

7.16.1.

716.2.
716.3.
716.4.
7.16.5.
7.16.6.
8. REFERENCES

9. APPENDIX: OPAQUE KEY TYPES AND ALGORITHMS
10. APPENDIX: OPAQUE OBJECT TYPES AND ALGORITHMS

clrcOpaqueObjectUpdate
clrcOpaqueObjectFinal

clrcAttrGetSize
clrcAttrGetNext
clrcAttrFind
clrcAttrGetFormat
clrcAttrSet
clrcAttrSetVv

EDES-0001-Rev E.

72
73
74
74
74
75
75
75
76
77

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com

78
79

5

https://www.secedge.com/

EmMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

2.INTRODUCTION

This document describes the CorelLockr™ Cryptographic API that is provided to allow easy
access to the cryptographic functions implemented by cryptographic hardware via a
Corelockr™ Cryptographic Executor (CCE).

CoreTEE™ is Seckdge’s implementation of a Trusted Execution Environment running on ARM™
processors. CorelLockr™ is Seckdge'’s solution for simple implementation of distributed systems
on hardware for embedded systems. The CCE is a CorelLockr™ service executing in CoreTEE™

which implements the CorelLockr™ Cryptographic Protocol. This architecture is shown in Figure 1.

Corel ockr™ Crypto
Executor with Key Store

TEE Internal Core API

'~ TEE Client API

Figure 1 — Corelockr™ Cryptographic Architecture

The Corelockr™ Cryptographic APl is inspired by the Cryptographic Operations API defined by
GlobalPlatform in the GlobalPlatform Internal Core API [9].

2.1. Philosophy
The design of this APl is intended to enable crypto agility without the need to add additional

routines except when completely new classes of operation are added.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

This is achieved by separating the provision of the options and values necessary to define the
operations (which differ with the algorithm and key size) from the operations themselves (which
do not).

For example, the sign operation is the same whether it is using an elliptic curve key, an RSA key
or a DSA key: the only difference is in how the operation is set up.

The API also tries to avoid the multiplicity of standards for the representation of key material by
using its own format which should be easy to convert into all the standard formats as required.

3. ARCHITECTURE

The architecture of the CorelLockr™ Cryptographic Services is illustrated in Figure 1 — CoreLockr™
Cryptographic Architecture. The components are explained in the subsequent sections.

Most of the entities shown in the diagram are internal to the system and are included merely for
illustrative purposes. All implementation details may be changed without notice and without
applications using the cryptographic APl being aware of the changes.

This is a user-written application which wishes to make use of cryptography. It makes use of the
Corelockr™ Cryptographic API defined in this document and is wholly unaware of all
implementation details.

The details of the CoreLockr™ Cryptographic API will change according to the operating system
on which the application is running. The CorelLockr™ Cryptographic API will always try to fit in
with the style of the native operating systems in order to make its use as simple as possible.

The Corelockr™ Cryptographic APl is defined in Sections 0 and 6. The CorelLockr™ Cryptographic
API provides access for applications to the cryptographic features of the CCE.

The CorelLockr™ Cryptographic API provides access to mechanisms for:

+ Symmetric encryption and decryption
+ Asymmetric encryption and decryption

Asymmetric signature and verification

+ Cryptographic secret agreement
+ Cryptographic hashing

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 7

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

+ Message authentication codes

The Corelockr™ Cryptographic Protocol (CCP) is a set of commands which are a 11 map to
commands in the CorelLockr™ Cryptographic API. These commands satisfy the requirements of
the Corelockr™ APl and are used to transfer user requests to the CorelLockr™ Cryptographic
Executor.

The CCP requires the CorelLockr™ Session API to implement sessions over CorelLockr™.

This is a standard APl which implements a session-based transport on top of the
connectionless CorelLockr™ transport. Before cryptographic keys and operations can be used, a
session to CoreTEE™ must be opened. The Corelockr™ Session API provides functions for
managing such sessions. By default, a single session is shared among threads with overlapping
clrcOpenSession () [clrcClosesession () calls. The APl uses reference counting and mutexes
to ensure that the calls are thread-safe. It is also possible to bind a session to a single pthread
and to set some operational parameters within the session using the clrcOpenSessionEx ()
function. See 6 CorelLockr Session API section.

The CorelLockr™ APl is the standard APl which is used by all CoreLockr™ clients and services.

The Corelockr™ Service process is a process running in the Normal World.

The Corelockr™ Cryptographic Executor (CCE) runs in secure mode in CoreTEE™ where
hardware acceleration is available for cryptographic operations. Operations are divided into
two classes: symmetric operations and asymmetric operations.

The CCE implements a key store. Key stores provide non-volatile storage of keys in encrypted
form addressed by names.

The keys within a key store may be password protected. This is achieved by the use of
password objects. A password object is a named entity stored within a key store and is loaded

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 8

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

by supplying the correct password. Once it is loaded then it may be supplied as an argument
when loading other keys in the key store which can only be opened when the correct password
object is supplied. It is also necessary to know the password to enumerate keys protected by
that password.

4. CONCEPTS

The following concepts are basic to the operation of the CorelLockr™ Cryptographic API
regardless of the platform.

Many operations return handles which identify objects managed by the CorelLockr™
Cryptographic API.

Handles are opaque 32 bit identifiers which are represented as pointers to opaque types solely
so that C argument type checking works. They are not pointers and cannot be used as such.

For example:

typedef struct ClrcKeyHandle t *ClrcKeyHandle;

is a handle for a cryptographic key. A handle with a value of 0 (also known as NULL) is always
an invalid value.

The same handle should not be used twice in the same context even for objects of different
types. Some randomness is applied to defeat handle guessing.

Handles are not addresses to ensure that:

+ Use of out-of-date handles is detected, so this does not lead to access to other people’s keys.
+ Use of random handles does not cause failures such as access violations nor does it allow
the key loading and export mechanisms to be used to leak data out of the Secure Region.

All cryptographic operations are executed by the CoreLockr™ Cryptographic Executor (CCE).

A cryptographic key is a secret which is used with a cryptographic algorithm to implement a
cryptographic operation.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedgecom 9

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Keys are referenced via key handles (section 4.4) and are stored as opaque key blobs (section
4.5) or within the CCE key store to maintain their confidentiality.

The structure of a key depends on the algorithms to which it can be applied and in a simple
implementation there would have to be different structures for each type of key. Instead, the
Corelockr™ Cryptographic APl adopts a model where keys have a list of attributes which
contain all their cryptographic key material and all the other settings which are necessary to
work with them

Keys are manipulated using key handles which identify a loaded key or key pair. A single key
represents both the public and private parts of an asymmetric key pair if both are supplied. Key
handles are process specific where processes exist.

Key handles are created when:

An opaque key blob is loaded.

A key is loaded from the key store of the CCE

Plain text key material is loaded; for example an asymmetric public key.

A key is created.

A key is derived from other data; for example by a Key Definition Function or a Key Derivation

+ 4+ + + +

mechanism (e.g. ECDH, DH).

Key handles must be explicitly deleted when they are no longer required (automatic cleanup
cannot be done since deleting a key handle can lose information).

The total number of simultaneously supported key handles is an implementation defined
compile time limit. There will be an implementation-defined limit on the number of key handles
which an application can use simultaneously.

Keys are provided to applications as device, opaque key blobs which contain both the key and
its attributes. Key blobs are device specific so they can only be used on the device that they
were generated on (they are encrypted using a device specific key). They are not appropriate
for any form of key exchange between devices.

Within a key blob, the type of key, length and other required attributes are stored along with a
set of flags which control the formats in which the key can be exported. The following settings
are included:

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 10

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Type of key (e.g. ECC, AES)

Size of key (generally in bits)

Applicable Algorithm (e.g. ECDSA, AES)

Algorithm parameters (e.g. ECC curve definition, DSA group, RSA padding, AES chaining mode)
Export as plain flag — Indicates whether the key material can be exported in an intelligible
form. This is never set for asymmetric private keys.

+ Export wrapped — The key may be exported wrapped by another key.

+ + + + +

Any key can be exported as an opaque key blob. Note that the value of the key blob is different
each time that it is exported since it includes a random initialization vector. The only operation
which is defined to act on an opaque key blob is to load it and get a handle to the contained
key

The act of loading an opaque key blob (see section 4.5 Key Blob) into memory creates a key
handle (see section 4.2 CoreLockrTM Cryptographic Executor (CCE)) which has all the same
properties as were stored in the key blob when it was created. The loading of a Key from a key
store is precisely equivalent and also generates a key handle.

The CCE implements a key store. Keys within a key store are addressed by name consisting of 1-
31 bytes of any type. Conventionally this would be a UTF-8 string but it does not have to be.

4.7.1. Password Objects
A password object represents a password and is used to control access to objects. Password
objects may only be stored in key stores: they cannot be stored as blobs.

Password objects have names just like keys and require a password to load them. The
maximum length of the password name is 31 bytes. The length of the password is limited solely
by available memory.

Password objects store the password in a hashed and salted form so that even someone with
access to the data of the object cannot determine what the password is.

A data object represents some form of secret which is to be stored but which does not form
part of a cryptographic key of any kind.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedgecom 1

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

This is represented as a key of type CLRC TYPE DATA OBJECT which is not accepted by any
algorithm. This has a single attribute of type CLRC ATTR SECRET VALUE. This type of key cannot
e created just imported.

An operation carries out some transformation or other cryptographic operation on a set of
data based on an algorithm. It maintains state so an operation can require a number of routine
calls to be completed.

Operations include at least the following:

Symmetric Encryption

Symmetric Decryption
Asymmetric Encryption
Asymmetric Decryption
Asymmetric Signature
Asymmetric Signature Verification
Hashing

MAC calculation

+ 4+ + + 4+ + + +

An operation makes use of a set of values to achieve its purpose. Which values are required for
each operation is determined by the associated algorithm. These will include:

+ Keys
+ Padding options

The state of an operation is maintained in secure memory in the CCE. This is because the
intermediate results which are stored there can leak information to an attacker if they are
accessible. The problem with this is that a limited number of operations can be handled
simultaneously due to the limited amount of operation cache memory that is available.

The supported key types and key sizes are listed in Table 1.

Key Key sizes Comments

Type

AES [3] 128,192, 256 bits

RSA [1] 1024, 2048, 3072, 1024 bits is legacy and should not be used for
4096 new code

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 12

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Key Key sizes Comments

Type

DES 192 Only 168 bits are actually used. This algorithm
should no longer be used

ECDSA P192, P224, P256, While an ECC key can be used for either ECDSA

[1] P384, P521 [5] or ECDH it is good practice to keep them
separate.

ECDH P192, P224, P256, While an ECC key can be used for either ECDSA

[2] P384, P521 5] or ECDH it is good practice to keep them
separate.

DH [6] 1024, 2048, 3072 1024 bits is legacy and should not be used for
new code

DSA [1] 1024, 2048, 3072 1024 bits is legacy and should not be used for
new code.

1024 supported using SHA],
2048 using SHA224 and SHA256,
3072 using SHA256.

HMAC Any number of Keys greater than the block size of the hash
[7] bytes algorithm add no security
KDF Up to 4096 bits HKDF [11], Concat KDF [12] and PBKDF2 [13]

Table 1 - Supported Types of keys

Key type Comments

CLRC_TYPE AES

CLRC_TYPE DES3 Legacy do not use

CLRC_TYPE DES Legacy do not use

CLRC TYPE HMAC MD5 HMAC using MD5. Should not be used under any
circumstances because MD5 is totally broken.

CLRC TYPE HMAC SHA1L HMAC using SHAI. Use only for backwards
compatibility

CLRC_TYPE HMAC SHA224 HMAC using SHA224.

CLRC TYPE HMAC SHA256 HMAC using SHA256.

CLRC_TYPE HMAC SHA384 HMAC using SHA384.

CLRC TYPE HMAC SHAS512 HMAC using SHAS12.

CLRC TYPE RSA KEYPAIR RSA key pair with both public and private parts

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 13

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API

Key type

CLRC_TYPE RSA PUBLIC RSA public key only

CLRC TYPE DSA KEYPAIR DSA key pair with both public and private parts

CLRC_TYPE_DSA PUBLIC DSA public key only

CLRC TYPE DH KEYPAIR Diffie-Hellman key pair with both public and
private parts

CLRC TYPE DH PUBLIC Diffie-Hellman public key only

CLRC TYPE ECDSA KEYPAIR ECDSA key pair with both public and private

parts. It is good practice to distinguish ECDSA
and ECDH keys.

CLRC TYPE ECDSA PUBLIC ECDSA pUb|IC key only. Itis gOOd pl’OCtiCG to
distinguish ECDSA and ECDH keys.
CLRC TYPE ECDH KEYPAIR ECDH key pair with both public and private

parts. It is good practice to distinguish ECDSA
and ECDH keys.

CLRC TYPE ECDH PUBLIC ECDH public key only. It is good practice to
distinguish ECDSA and ECDH keys.

CLRC TYPE HKDF IKM HKDF key containing the Input Key Material

CLRC TYPE CONCAT KDF 7% Concat KDF key containing the shared secret.

CLRC TYPE PRKDF2 PASSWORD PBKDF2 key Contoinihg the pOSSWOfd.

CLRC TYPE DATA OBJECT Data object — not usable for cryptographic
operations

Table 2 Supported Key type definitions

The supported hashing algorithms are listed in Table 3.

Key Hash size Comments

Type

MD5 [8] 128 bits This is totally broken and should never be used
under any circumstances

SHA-1 160 SHA-1is deprecated and should only be used

[4] to support legacy systems

SHA-2 224,256, 384, 512

[4]

Table 3 - Supported Hash Types

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com

EDES-0001-Rev E.

14

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

5. TYPES AND CONSTANTS

All of the routines, structures and constants which define the CoreLockr™ Cryptographic APl are
defined in a single header file:

corelockr crypto.h

The Corelockr™ Cryptographic interfaces offer only source level compatibility between versions.
It is not guaranteed that constants will retain their values between any two versions of the API.

It is always necessary to re-compile all client code using the CorelLockr™ Cryptographic API
when the version changes.

Key attributes are stored in type-length-value format which is designed to keep the structure
small.

Typedef struct clrcTLV t
{

uintlé t attribute type; // type for this attribute
uintl6_t length in bytes; // length in bytes of value
uint8 t wvaluell]; // value of the attribute

} ClrcTLV;

Attributes are stored as a series of such structures which are appended together in a single
buffer with an overall length. If the length of the attribute is odd then one byte of padding is
added to the value so as to align the next entry in the TLV stream.

A set of utility routines is provided to manipulate these attribute strings — see section 7.16
Attribute Manipulation Routines.

In Table 4 the P field indicates the protected status of attributes. If the P column is set to Y for an
attribute then that attribute is protected and cannot be accessed if the
CLRC_ATTR EXPORT AS PLAIN attribute is missing oris not setto 1.

In Table 4 the F field indicates the format for the attribute. The valid format values are defined in
Table b — Attribute Formats.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 15

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic AP EDES-0001-Rev E.

Key Attribute F P

CLRC ATTR SECRET VALUE H Y The value for simple keys for
symmetric ciphers, MAC and
HMAC. Length determined by
key size.
The stored value for data
objects.

CLRC ATTR RSA MODULUS B The public modulus that forms
part of the public key of an
RSA key pair

CLRC_ATTR RSA_ PUBLIC_EXPONENT B The public exponent of an RSA
key.

CLRC_ATTR RSA PRIVATE EXPONENT B Y

CLRC_ATTR RSA PRIME1 B Y Je

CLRC_ATTR RSA PRIME2 B Y q

CLRC_ATTR RSA EXPONENT1 B Y ap

CLRC_ATTR_RSA EXPONENT2 B Y aq

CLRC_ATTR RSA COEFFICIENT B Y iq

CLRC_ATTR DSA PRIME B P

CLRC_ATTR DSA SUBPRIME B q

CLRC_ATTR DSA BASE B g

CLRC_ATTR DSA PUBLIC VALUE B Y

CLRC_ATTR DSA PRIVATE VALUE B Y X

CLRC_ATTR DH PRIME B P

CLRC_ATTR DH SUBPRIME B q

CLRC_ATTR DH BASE B g

I /

CLRC_ATTR DH X BITS

CLRC_ATTR _DH PUBLIC_ VALUE B y
CLRC_ATTR DH PRIVATE VALUE B Y X
CLRC_ATTR_ECC PUBLIC VALUE X B
CLRC_ATTR_ECC PUBLIC VALUE Y B
CLRC_ATTR_ECC PRIVATE VALUE B Y d

©2024 SecEdge™ | PO Box 127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 16

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API

Key Attribute
CLRC_ATTR ECC CURVE

CLRC_ATTR_ECDH X9 63 PRF ALG

CLRC_ATTR ECDH X9 63 SHARED DATA

CLRC_ATTR_ECDH X9 63 DKM LENGTH

CLRC_ATTR HKDF IKM
CLRC_ATTR_HKDF SALT
CLRC_ATTR_HKDF_INFO

CLRC_ATTR HKDF_ OKM LENGTH

CLRC_ATTR_CONCAT KDF %
CLRC_ATTR_CONCAT KDF OTHER_ INFO

CLRC_ATTR CONCAT KDF DKM LENGTH

CLRC_ATTR PBKDF2 PASSWORD
CLRC_ATTR PBKDF2 SALT
CLRC_ATTR PBKDF2 ITERATION COUNT

CLRC_ATTR_PBKDF2 DKM LENGTH

CLRC_ATTR KEY TYPE
CLRC_ATTR KEY LENGTH

CLRC_ATTR_EXPORT AS PLAIN

Table 4 - Attribute definitions

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com

T T =T -

EDES-0001-Rev E.

One of the values from Table 6
— Supported Elliptic Curve
definitions.

The SHA hash algorithm ID for
the Pseudo-Random Function
used in the ANSI X9.63 KDF (e.g.
CLRC_ALG_SHA256) [14].

ANSI X9.63 KDF shared data.

The length in bytes of the
derived key material.
HKDF Input Key Material.

HKDF salt datao.
HKDF info data.

The length in bytes of the
derived key material.
Concat KDF shared secret.

Concat KDF other info data.

The length in bytes of the
derived key material.
PBKDF2 password data.

PBKDF2 salt datao.
PBKDF2 number of iterations.

The length in bytes of the
derived key material.
The type of the key.

The length in bits of the key.

If O or missing then the secret
parts of the key cannot be
exported and will be omitted
from the attributes list, if 1 then
the secret parts of the key or
key pair can be exported.

17

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Format value in Description

Table 4

H An array of unsigned uint8_t

B An unsigned big-endian bignum in binary format. Leading

zero bytes are allowed.

Integer — a 32 bit integer
Table 5 — Attribute Formats

Curve name Description

CLRC_ECC_CURVE NIST P192 NIST secpl92r1 curve from [5]
CLRC_ECC_CURVE NIST P224 NIST secp224r1 curve from [5]
CLRC_ECC_CURVE NIST P256 NIST secp256r1 curve from [5]
CLRC_ECC_CURVE NIST P384 NIST secp384r1 curve from [5]
CLRC_ECC_CURVE NIST P521 NIST secp521rl curve from [5]

Table 6 — Supported Elljptic Curve definitions

There are some attributes which must be present when creating a key and some which may be

present.
Object type Required Attributes
Any key type CLRC ATTR EXPORT AS PLAIN may be specified. By
default it is not present
CLRC TYPE AES No parameter is necessary. The function creates a

value for the CLRC_ATTR SECRET VALUE attribute

CLRC_TYPE_DESS which is the full key length.

CLRC_TYPE HMAC_ MD5
CLRC_TYPE HMAC SHAL
CLRC_TYPE HMAC SHA224
CLRC_TYPE HMAC SHA256
CLRC_TYPE HMAC SHA384

CLRC_TYPE HMAC SHA512

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 18

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Object type Required Attributes

CLRC TYPE RSA KEYPAIR No parameters are required.
CLRC ATTR RSA PUBLIC EXPONENT may be

specified but if omitted it defaults to 65537.

Key generation will follow the rules defined in [10].
The function generates and populates the following
attributes:

CLRC_ATTR_RSA MODULUS
CLRC_ATTR RSA PUBLIC EXPONENT (if not specified)
CLRC_ATTR _RSA PRIVATE EXPONENT
CLRC_ATTR RSA PRIME1

CLRC_ATTR _RSA PRIME2

CLRC_ATTR_RSA EXPONENT1

CLRC_ATTR_RSA EXPONENT2
CLRC_ATTR RSA COEFFICIENT

CLRC TYPE RSA PUBLIC This type cannot be created only imported.
CLRC TYPE DSA KEYPAIR The following domain parameter MUST be passed to
- - the function:
CLRC_ATTR DSA PRIME
CLRC_ATTR DSA SUBPRIME
CLRC_ATTR DSA BASE

The function generates and populates the following
attributes:

CLRC_ATTR DSA PUBLIC VALUE
CLRC_ATTR DSA PRIVATE VALUE

CLRC TYPE DSA PUBLIC This type cannot be created only imported.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 19

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Object type Required Attributes

CLRC TYPE DH KEYPAIR The following domain parameters MUST be passed
N - to the function:

CLRC_ATTR DH PRIME
CLRC_ATTR DH BASE
The following parameters can optionally be passed:
CLRC_ATTR DH SUBPRIME (q): If present, constrains
the private value xto be in the range [2, ¢-2]
CLRC ATTR DH x BITS (/): If present, constrains the
private value xto have /bits
If neither of these optional parts is specified, then
the only constraint on xis that it is less than p-1.
The function generates and populates the following
attributes:
CLRC_ATTR DH PUBLIC VALUE
CLRC_ATTR DH PRIVATE VALUE

CLRC_ATTR DH X BITS (number of bitsin x)
CLRC TYPE DH PURLIC This type cannot be created only imported.

CLRC TYPE ECDSA KEYPAIR The foIIowing domain parameters MUST be pOSSGd

CLRC TYPE ECDH KEYPAIR to the function:

CLRC_ATTR ECC_CURVE
The function generates and populates the following
attributes:
CLRC_ATTR ECC PUBLIC VALUE X
CLRC_ATTR ECC PUBLIC VALUE Y
CLRC_ATTR ECC PRIVATE VALUE

CLRC TYPE ECDSA PUBLIC These types cannot be created only imported.

CLRC_TYPE ECDH PUBLIC

CLRC_TYPE HKDF_ IKM This type cannot be created only imported.
CLRC_TYPE CONCAT KDF % This type cannot be created only imported.
CLRC_TYPE PBKDF2 PASSWORD This type cannot be created only imported.
CLRC_TYPE DATA OBJECT This type cannot be created only imported.

Table 7 — Allowed attributes when creating keys

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 20

https://www.secedge.com/

EmMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

There are some attributes which must be present when importing a key and some which may

e present.
Object type Required Attributes
Any key type CLRC ATTR EXPORT AS PLAIN may be specified. By

default it is not present

CLRC TYPE AES CLRC_ATTR SECRET VALUE

CLRC_TYPE DES3

CLRC_TYPE HMAC_MD5
CLRC_TYPE HMAC_ SHA1
CLRC_TYPE HMAC SHA224
CLRC_TYPE HMAC_ SHA256
CLRC_TYPE HMAC_ SHA384
CLRC_TYPE HMAC SHA512

CLRC_TYPE RSA KEYPAIR CLRC_ATTR_RSA PUBLIC EXPONENT
CLRC_ATTR_RSA MODULUS
CLRC_ATTR_RSA PRIME1L
CLRC_ATTR_RSA PRIME2

The following may be present but if they are all must be specified.
If not present then they will be calculated.

CLRC_ATTR RSA EXPONENTI
CLRC_ATTR RSA PRIVATE EXPONENT
CLRC_ATTR RSA EXPONENT2Z
CLRC_ATTR RSA COEFFICIENT

CLRC_TYPE RSA PUBLIC CLRC_ATTR_RSA PUBLIC EXPONENT
CLRC_ATTR RSA MODULUS

CLRC TYPE DSA KEYPAIR CLRC_ATTR DSA PRIME
CLRC_ATTR DSA_ SUBPRIME
CLRC_ATTR DSA BASE
CLRC_ATTR DSA PUBLIC_ VALUE
CLRC_ATTR DSA PRIVATE VALUE

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 21

https://www.secedge.com/

EmMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Object type Required Attributes

CLRC_TYPE DSA PUBLIC CLRC_ATTR DSA PRIME
CLRC_ATTR DSA_ SUBPRIME
CLRC_ATTR DSA BASE
CLRC_ATTR DSA PUBLIC_ VALUE

CLRC TYPE DH KEYPAIR CLRC_ATTR DH PRIME
CLRC_ATTR DH BASE
CLRC_ATTR DH SUBPRIME
CLRC_ATTR DH PUBLIC_ VALUE
CLRC_ATTR DH PRIVATE VALUE
CLRC_ATTR DH X BITS

CLRC_TYPE DH PUBLIC CLRC_ATTR DH PRIME
CLRC_ATTR DH BASE
CLRC_ATTR DH SUBPRIME
CLRC_ATTR DH PUBLIC VALUE

CLRC_TYPE ECDSA KEYPAIR CLRC_ATTR_ECC CURVE

CLRC_TYPE ECDH KEYPAIR CLRC_ATTR ECC_PUBLIC VALUE X
CLRC_ATTR_ECC PUBLIC VALUE Y
CLRC_ATTR ECC PRIVATE VALUE

CLRC_TYPE ECDSA PUBLIC CLRC_ATTR ECC_CURVE
CLRC_TYPE ECDH PUBLIC CLRC_ATTR ECC_PUBLIC_ VALUE_ X
CLRC_ATTR ECC_PUBLIC_VALUE_ Y

CLRC_TYPE HKDF IKM CLRC_ATTR_HKDF_ IKM
CLRC_TYPE CONCAT KDF % CLRC_ATTR_CONCAT KDF %
CLRC_TYPE PBKDF2 PASSWORD CLRC_ATTR PBKDF2 PASSWORD

CLRC_TYPE DATA OBJECT CLRC ATTR SECRET VALUE

Table 8 — Required attributes when importing keys

A cryptographic algorithm identifies a specific type of processing which an operation will
perform.

Name Valid Modes Comments

CLRC_ALG AES ECB_NOPAD ENCRYPT

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 22

https://www.secedge.com/

EmMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Name Valid Modes Comments

CLRC_ALG_AES_CBC_NOPAD DECRYPT

CLRC_ALG_AES OFB

CLRC ALG AES CTR Maximum length of 2A20
bytes

CLRC_ALG _AES CFB 8
CLRC_ALG_AES_CFB 128
CLRC_ALG AES XTS Requires two keys
CLRC_ALG AES CCM
CLRC_ALG_AES_GCM
CLRC_ALG DES3 ECB_ NOPAD
CLRC_ALG DES3 CBC_NOPAD
CLRC_ALG_DES_ECB_NOPAD
CLRC_ALG DES CBC NOPAD
CLRC_ALG DES3 OFB
CLRC_ALG_DES3 CFB_8

CLRC_ALG DES3 CFB_ 64

CLRC_ALG_AES CBC_MAC NOPAD
CLRC_ALG_AES_CBC_MAC PKCS5
CLRC_ALG_AES CMAC

CLRC_ALG DES3_CBC_MAC_ NOPAD
CLRC_ALG_DES_CBC_MAC NOPAD

CLRC_ALG DES3 CBC_MAC_PKCS5 MAC
CLRC_ALG_DES_CBC_MAC PKCS5
CLRC_ALG_HMAC MD5

CLRC_ALG_HMAC SHA1

CLRC_ALG_HMAC SHA224

CLRC_ALG_HMAC SHA256

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 23

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API

Name Valid Modes

CLRC_ALG_HMAC SHA384

CLRC_ALG_HMAC SHA512
CLRC_ALG_RSASSA PKCS1 V1 5 MD5
CLRC_ALG_RSASSA PKCS1 V1 5 SHAL
CLRC_ALG_RSASSA PKCS1 V1 5 SHA224

CLRC_ALG _RSASSA PKCS1 V1 5 SHA256
CLRC_ALG_RSASSA PKCS1 V1 5 SHA384

CLRC_ALG RSASSA PKCS1 V1 5 SHAS512

CLRC_ALG RSASSA PKCS1 PSS MGF1_ SHA1
CLRC_ALG_RSASSA PKCS1 PSS MGF1 SHA224
CLRC_ALG RSASSA PKCS1 PSS MGF1 SHA256
CLRC_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384 gray
CLRC_ALG RSASSA PKCS1 PSS MGF1 SHA512 | VERIFY
CLRC_ALG_DSA SHA1

CLRC_ALG DSA SHA224

CLRC_ALG_DSA SHA256

CLRC_ALG_ECDSA_ P192

CLRC_ALG_ECDSA_P224
CLRC_ALG_ECDSA_P256
CLRC_ALG_ECDSA_P384
CLRC_ALG_ECDSA_P521
CLRC_ALG_RSAES PKCS1 V1 5

CLRC_ALG RSAES PKCS1 OAEP MGFl SHAl

CLRC_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224 pyopypr ag

CLRC_ALG RSAES PKCS1 OAEP MGF1 SHA256 DECRYPT_AS

CLRC_ALG RSAES PKCS1 OAEP MGFl SHA384

CRC_ALG RSAES PKCS1 OAEP MGFl SHA512

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com

EDES-0001-Rev E.

Comments

Signature in raw format.

DER encoding not
accepted
Signature in raw format

Signature in raw format
Signature in raw format

Signature in raw format

24

https://www.secedge.com/

EmMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Name Valid Modes Comments
CLRC_ALG_RSA NOPAD
CLRC ALG MD5
CLRC ALG SHAl
CLRC_ALG SHA224
HASH
CLRC ALG SHA256
CLRC ALG SHA384
CLRC_ALG SHA512
CLRC_ALG DH DERIVE SHARED SECRET
CLRC _ALG ECDH P192
CLRC_ALG _ECDH_P224
CLRC_ALG ECDH P256
CLRC_ALG ECDH P384
CLRC_ALG _ECDH_P521
CLRC_ALG HKDF MD5
CLRC_ALG HKDF SHAIl
CLRC_ALG HKDF SHA224
DERIVE
CLRC_ALG HKDF SHA256
CLRC_ALG HKDF SHA384
CLRC_ALG HKDF SHA512
CLRC_ALG CONCAT KDF SHAI1
CLRC ALG CONCAT KDF SHA224
CLRC_ALG_CONCAT KDF SHA256
CLRC_ALG CONCAT KDF SHA384

CLRC_ALG_CONCAT KDF SHA512

CLRC_ALG PBKDF2 HMAC SHAl

Table 9 — Algorithm definitions

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 25

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

When creating an operation, you have to specify the mode in which the operation works, for
example encrypt versus decrypt. The modes which are valid for each algorithm are defined in
Table 10.

Mode Description

CLRC_MODE_ENCRYPT Encrypt data

CLRC_MODE DECRYPT Decrypt data

CLRC_MODE_SIGN Generate signatures

CLRC_MODE_VERIFY Verify signatures

CLRC_MODE ENCRYPT AS Encrypt data

CLRC MODE DECRYPT AS Decrypt data

CLRC_MODE_HASH Generate cryptographic hashes
CLRC_MODE_ MAC Generate Message Authentication Codes
CLRC_MODE DERIVE Derive shared key

Table 10 — Operation Modes

6. CORELOCKR SESSION API

The Corelockr™ Session API functions are defined in corelockr session.h. Most of the error
codes returned by these functions are defined in the CoreLockr™ API header file corelockr.h.

The Session APl does not use a stack of sessions. Normally only one session is opened at a time,
regardless of how many times clrcOpenSession () is called, and that session is shared
amongst all threads. The functions use reference counting to ensure there is only one session,
and that the session is only closed when the count goes to zero. They also use pthread
mutexes to ensure that the session handling and reference counting is thread safe. There is
also the possibility to open a new session within a thread instead of using the default session.
The new session is only used within the calling thread, and is independent of the session(s)
used by the other threads.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 26

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

The main advantage to using a separate session is that a panic within the TA will be limited to
only that thread. Other threads will continue to access their sessions normally.

clrcOpenSessionEx () can be used to set parameters within the session.

The CLRC TA PARAM DEBUG LEVEL parameter is used to set the verbosity level of the logging
from the debug version of the TA. The CLRC TA PARAM MAX NUM OPS parameter is used to set
the maximum number of simultaneous operations in a session.

The CLRC TA PARAM MAX NUM KEYS parameter is used to set the maximum number of
simultaneously loaded keys in a session. The last two are useful for limiting the maximum
amount of memory used in a session. The default values are CLRC TA PARAM MAX NUM OPS =
100 and CLRC_TA PARAM MAX NUM KEYS = 256. These values can be increased via the
parameters if necessary. However, it is a good idea to reduce them to just above the expected
maximum values during development to ensure that the code is not leaking operations or keys.

Such leaks in long-running sessions can seriously fragment or even fill up the CoreTEE™ heap to
the point that other TAs cannot be loaded or persistent objects are permanently corrupted.
Setting appropriate limits on the number of operations and keys will ensure that an error is
returned when too many operations and or keys are being used before allocations in the
CoreTEE™ heap start to fail.

The CLRC TA PARAM THREAD SESSION parameter to clrcOpenSessionEx () is used to bind a
new session to the current pthread ID. If a session for that thread already exists, then its
reference is incremented. The CorelLockr™ Crypto library implicitly uses the current thread ID to
select which session is used from a list (not from a stack). Once a session is bound to a thread
ID, then only that session is used in that thread until it is closed.

Likewise, when calling clrcCloseSession (), the thread ID is used to select which session in the
list is closed (or has its reference count decremented).

Note that the debug and limit parameters are only passed to the TA when a new session is
actually opened. If there is a currently existing session when clrcOpenSessionEx () is called
with new parameters, then the new parameters are ignored and a warning code is returned.

It should also be noted that even leaked operations and keys are wiped from the CoreTEE™
heap when the session containing them is actually closed. So, leaks from sequential sessions do
not build up in the heap.

Note:The corelockr session.h header file explains differences with the deprecated
clrsOpenSession andclrsCloseSession functions.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 27

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

6.3.1. clrcOpenSession

ClrResult clrcOpenSession (void);

Open a session to the server if necessary. The default parameters in the TA are used. Because
no input parameters are provided, this function does not return the CLRC SESSION EXISTS
code.

Return values

Most of the return values are defined in corelockr.h header file.

6.3.2. clrcOpenSessionEx

ClrResult clrcOpenSessionEx (int numParams, ...);
Open a session to the server with input parameters if necessary.

Parameters

numParams — number of following parameters. Any parameter that is left out is set to the
default in the TA. Unknown parameters are ignored.

... —the parameters are input as pairs of unsigned integers, with the parameter ID first
followed by the parameter value.

Parameter IDs Description

CLRC TA PARAM DEBUG LEVEL Verbosity level of the |Ogg|ﬂg from the debug
version of the TA. Default: CLRC TRACE INFO.

CLRC TA PARAM MAX NUM OPS Maximum number of simultaneous operations in a
- - session. Default: 100.

CLRC TA PARAM MAX NUM KEYS Maximum number of simultaneously loaded keys
- I in a session. Default: 256.

CLRC TA PARAM THREAD SESSION Bind the new session to the current thread ID.
- - B Default: 0.

o 0:do not bind.
o nhon O: bind.

CLRC_TA PARAM MAX NUM OPS and CLRC_TA PARAM MAX NUM KEYS - limits the maximum
amount of memory used in a session.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 28

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

CLRC_TA_PARAM_DEBUG _LEVEL Description
CLRC_TRACE ERROR Log level for reporting errors.
CLRC_TRACE INFO Log level for reporting information.
CLRC_TRACE_DEBUG Log level for reporting debugging messages.
CLRC_TRACE_FLOW Log level for reporting flow information.
Notes:

Setting a level also enables the levels below it in value. So, setting the level to CLRC TRACE FLOW
enables all of the logging messages.

The release version of the TA only has up to CLRC_TRACE INFO level messages compiled into it,
so setting the level above that has no effect. The debug version of the TA supports all four

levels.

Example of how clrcOpensSessionEx () might be called:

ClrResult res;
res = clrcOpenSessionEx (3, // The number of following parameters
CLRC_TA PARAM DEBUG LEVEL, CLRC TRACE DEBUG,
CLRC TA PARAM MAX NUM OPS, 32,
CLRC_TA PARAM MAX NUM KEYS, 16);
if (res != CLR SUCCESS) {
if (res == CLRC_SESSION EXISTS) {
// Parameters were ignored, 1t is safe to continue operations and
// close the session later.

} else if (res == CLR_ERROR_INSUFFICIENT_RESOURCES) {
// Wait a bit and try again later.
} else {

// The session failed to open, so give up.

Return values

Return code Comments

CLRC SESSTON EXISTS If a session already exists, then this warning code is
returned when input parameters are provided.
CLR ERROR * Return values are defined in corelockr.h header
N N file.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 29

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

6.3.3. clrcCloseSession

ClrResult clrcCloseSession (void);

Close the session and free all associated memory if it is no longer being used.
Return values

Most of the return values are defined in corelockr.h header file.

7.CORELOCKR™ CRYPTOGRAPHIC API

7.1.1. Basic Types
All routine definitions make use of the types defined in stdint.h.

The main types that are used are uint8 t and uint32 t.

7.1.2. Blocking Interface
The CorelLockr™ Cryptographic APl is a blocking interface. Thus each routine, when executed,

does not return until the operation is complete.

The time taken by each routine is not defined and could vary greatly depending on the
workload of the cryptographic accelerator and which algorithms can be accelerated by
hardware.

This programming model is simple and easy to understand for programmers.

7.1.3. Error Handling
All the routines return a result of type ClrcResult. The return values for this are defined in Table

1.

The allowed return codes from each routine are defined in the routine definition. In addition any
of the error codes defined by the CorelLockr™ Session API or the CorelLockr™ APl may be
returned.

CLRC_SUCCESS indicates that the routine succeeded and all arguments are valid.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 30

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

A return code of CLRC ERROR PROGRAMMER indicates an error which the programmer should
have caught at coding time.

Examples include

e Invalid argument value, for example a NULL buffer pointer or a zero length.

e Using a handle of the wrong type

e Inconsistent arguments, for example invalid DSA group parameters.

e Invalid semantics, for example a previous routine call failed so the operation is now invalid.

Any problems which is out of the hands of the programmer will generate another return code,
for example

e Insufficient resources, for example no memory, no space in key cache etc.
All routines may return this error code.

The implementation does not make major efforts to find all such errors because this would
make the code larger and slower. Such errors may cause other failures such as access
violations etc.

For those who know the GlobalPlatform Internal Core API [9] this return code corresponds with @
Panic.

Many routines return data into a buffer with a specified length. In many cases the programmer
does not know how long the data will be and therefore cannot allocate a suitable buffer.

In such cases if the supplied buffer is too short for the result (e.g. if the length is set to 0) then
the routine will return CLRC_ERROR_SHORT BUFFER and will set the returned length to the length
that is required. The caller can then allocate a suitable buffer and retry the operation.

If the length is 0 in any such case then the buffer address is not inspected at all so it can be
NULL.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 31

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API

uint8 t *buffer = NULL;
uint32 t buffer length = 0;

do
{
result = some operation(.., buffer, &buffer length, ..);
if (result == CLRC ERROR SHORT BUFFER)
{
buffer = (uint8 t *) malloc (buffer length);
if (buffer == NULL) ..fail..;
}
} while(result == CLRC_ERROR SHORT BUFFER) ;

Figure 2 — Example of handling CLRC_ERROR_SHORT_BUFFER

The following are the API return codes.

CLRC_SUCCESS 0%00000000 Will always be 0x00000000

CLRC_ERROR PROGRAMMER OxFFFFO101 See section 71.3.2
Programmer Errors

CLRC_ERROR_ACCESS DENIED OxFFFF0102

CLRC_ERROR NO MEMORY OxFFFF0103

CLRC_ERROR BAD FORMAT OxFFFFOL104

CLRC_ERROR BAD HANDLE OxFFFF0105

CLRC_ERROR SHORT BUFFER OxFFFFO106 See section 71.3.3
CLRC_ERROR_SHORT_BUFFER

CLRC_ERROR CACHE FULL OxFFFFO0107

CLRC_ERROR TAG MISMATCH OxFFFFOL08

CLRC_ERROR NOT SUPPORTED OxFFFF0109

CLRC_ERROR_NOT FOUND OxFFEFFO10A

CLRC_ERROR EXISTS OxFFFFO10B

CLRC_ERROR_NO MORE KEYS 0x00000101 Success code

CLRC_ERROR_NO PASSWORD 0x00000102 Success code

Table Il — Return Codes

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com

EDES-0001-Rev

E.

32

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.2.1. clrcUnloadKey
ClrcResult clrcUnloadKey (ClrcKeyHandle hKey) ;

This routine unloads the key associated with the handle and invalidates the handle. This works
on key handles from all sources.

Parameters
hKey — key handle which will be invalidated.

Return values

Return code Comments

CLRC SUCCESS The call succeeded
CLRC ERROR PROGRAMMER A programmers error was detected
CLRC ERROR BAD HANDLE The handle is invalid, perhaps it has already been

unloaded. Normally this would be a programmer error
but it is a separate error here to simplify error handling

7.2.2. clrcimportKey

ClrcResult clrcImportKey (ClrcKeyHandle *hKey,

uint32 t type,

uint32 t keySize,

ClrcTLV *attributes,

uint32 t attributesLength) ;

This routine imports either a key or a key pair depending on the type that is requested.

The attributes specify the key material and all other attributes of the key. The required values,
which vary with the key type, are defined in Table 8 — Required attributes when importing keys,
in section 5.4 Required Key Attributes When Importing Keys.

Parameters
hKey — key handle which will be returned.
type — the type for the key.

keySize —the size of the key in bits — the allowed sizes are listed in Table 1 — Supported Types
of keys in section 4.10 Key Types.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 33

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

attributes - the attributes for the new key as a list of TLV values appended together. The
required and optional attributes are defined in Table 8 — Required attributes when importing
keys, in section 5.4 Required Key Attributes When Importing Keys.

attributesLength — the length in bytes of the attributes.

Return values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR NO MEMORY There is insufficient memory to create the key.

CLRC ERROR PROGRAMMER A programmers error was detected

CLRC ERROR NOT SUPPORTED Algorithm or key size is not supported by the
implementation

CLRC ERROR CACHE FULL The key cache is full and there is insufficient space

to represent a key of this type.

7.2.3. clrcCreateKey
ClrcResult clrcCreateKey (ClrcKeyHandle *hKey,

uint32 t type,

uint32 t keySize,

ClrcTLV *attributes,

uint32 t attributesLength) ;

This routine creates either a key or a key pair depending on the type of key that is requested.
The local random number generator is used to generate the key material.

Depending on the type of key that is being generated some attributes may be required, i.e. if
they are not present then the routine will always fail with a status of CLRC ERROR PROGRAMMER.
These are listed in Table 7 — Allowed attributes when creating keys in section 5.3 Required Key
Attributes to Create a Key.

Parameters
hKey — key handle which will be returned.
type — the type for the key.

keySize — The size of the key in bits — the allowed sizes are listed in Table 1 — Supported Types
of keys in section 4.10 Key Types.

attributes - the attributes for the new key as a list of TLV values appended together. The
required and optional attributes are defined in Table 7 — Allowed attributes when creating keys.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedgecom 34

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

attributesLength — the length in bytes of the attributes.

Return Values

Return code Comments

CLRC_SUCCESS The call succeeded

CLRC_ERROR NO MEMORY There is insufficient memory to create the key.
CLRC_ERROR PROGRAMMER A programmers error was detected

CLRC_ERROR NOT SUPPORTED Algorithm is not supported by the implementation
CLRC_ERROR CACHE FULL The key cache is full and there is insufficient space

to represent a key of this type.

7.2.4. clrcSaveOpaqueKeyEx
This routine verifies the signature of an encrypted key package, decrypts and loads the key that
it contains into the Corelockr™ keystore. The key package must have been created using the
shell script make opaque key package.sh, available from SecEdge Inc, or follow the same
process as described in the shell script. In order to make use of the key, the user must
independently have prior knowledge of its type and name. For use, the key should be retrieved
using clrcLoadNamedKey () With a handle to the same password object passed to
clrcSaveOpaqueKeyEx (), or d NULL password argument in both cases if no password is
required. 9 Appendix: Opaque Key types and Algorithms lists the supported types of key to be
packaged, cipher algorithms and MAC algorithms.
ClrcResult clrcSaveOpaqueKeyEx (const uint8 t *keyPkg,

uint32 t keyPkgLength,

ClrcKeyHandle hDeviceKey,

ClrcPasswordHandle hPassword);
The original c1rcSaveOpaqueKey () function is still there for backwards compatibility. Internally,
clrcSaveOpaqueKey () calls clrcSaveOpaqueKeyEx () AS

clrcSaveOpaqueKeyEx (keyPkg, keyPkgLength, 0, 0).
Parameters
keyPkg — encrypted package as an octet sequence.

keyPkgLength — number of octets in keyPkg.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 35

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

hDeviceKey — handle to aloaded key that is used in the ECDH shared secret derivation to
decode the opaque key. If the handle is '0’, then the default is to use the named
“com.seglabs.device key” key that was provisioned on the board.

hPassword — handle to aloaded password object. Password to use to access the key. If NULL,
then the key will be accessible without a password.

Return Values

Return code Comments

CLRC_SUCCESS The call succeeded

CLRC_ERROR SIGNATURE INVALID Failure to verify signature

CLRC_ERROR EXISTS Attempt to re-create existing key

CLRC_ERROR NO MEMORY Insufficient memory to complete operation
CLRC_ERROR_NOT SUPPORTED Either public key type or MAC type not supported
CLRC_ERROR BAD FORMAT Package format wrong/corrupted

7.2.5. clrcSaveOpaqueKey

ClrcResult clrcSaveOpaqueKey (const uint8 t *keyPkg,
uint32 t keyPkgLength);

This function is superseded by clrcSaveOpagqueKeyEx ().

This routine verifies the signature of an encrypted key package, decrypts and loads the key that
it contains into the Corelockr™ keystore. The key package must have been created using the
shell script make opaque key package.sh, available from SecEdge Inc, or follow the same
process as described in the shell script. In order to make use of the key, the user must
independently have prior knowledge of its type and name. For use, the key should be retrieved
using clrcLoadNamedKey With a NULL password argument.

Parameters
keyPkg — encrypted package as an octet sequence.
keyPkgLength — Number of octets in keyPkag.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 36

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Return code Comments

CLRC_ERROR SIGNATURE INVALID Failure to verify signature

CLRC_ERROR EXISTS Attempt to re-create existing key

CLRC_ERROR NO MEMORY Insufficient memory to complete operation
CLRC_ERROR NOT SUPPORTED Either public key type or MAC type not supported
CLRC_ERROR BAD FORMAT Package format wrong/corrupted

7.3.1. clrcGetAttribute
ClrcResult clrcGetAttribute (ClrcKeyHandle hKey,

uint32 t attribute,
ClrcTLV *value,
uint32 t *valuelLength) ;

This routine returns an attribute of the key pointed to by the handle. The attribute is returned as
a TLV structure.

If the key does not have the CLRC ATTR EXPORT AS PLAIN attribute set to 1then protected
attributes will generate CLRC ERROR ACCESS DENIED.

Parameters

hKey — key handle.

attribute - the attribute to return.

value — buffer to hold the output key attribute.

valueLength — length of the attribute buffer on input, on output the length of the returned
attribute value.

See section 7.1.3.3 CLRC_ERROR_SHORT_BUFFER for full details of the behavior.

Return values

Return code Comments
CLRC SUCCESS The call succeeded
CLRC ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3CLRC_ERROR_SHORT_BUFFER

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 37

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Return code Comments

CLRC ERROR PROGRAMMER A programmers error was detected

CLRC ERROR ACCESS DENIED Attempt to export a protected property when the
CLRC_ATTR EXPORT AS PLAIN attribute is not set to
.

7.3.2. clrcGetAllAttributes

ClrcResult clrcGetAttributes (ClrcKeyHandle hKey,
ClrcTLV *attributes,
uint32 t *attributesLength) ;

This routine returns all attributes of the key pointed to by the handle. The attributes are returned
as a set of appended TLV structures.

If the key does not have the CLRC ATTR EXPORT AS PLAIN attribute set to 1then protected
attributes will be omitted from the returned vector of attributes.

Parameters
hKey — key handle.
attributes - buffer to hold the returned key attributes.

attributesLength — length of the attribute buffer on input, on output the length of the
returned attributes. See section 7.1.3.3 CLRC _ERROR_SHORT_BUFFER for full details of the
behavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER

CLRC ERROR PROGRAMMER A programmers error was detected

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 38

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

#define CLRC_KEY NAME MAX LENGTH 31
typedef struct
{
uint8 t length; // length in bytes
uint8 t name[CLRC _KEY NAME MAX LENGTH];
} ClrcKeyName;

typedef struct ClrcPassword tag ClrcPasswordHandle;

7.4.1. clrcKeyStoreExists

ClrcResult clrcKeyStoreExists();

This routine indicates whether the CCE has a key store. If a key store is accessible then the
routine returns CLRC_SUCCESS otherwise it returns CLRC_ERROR_NOT SUPPORTED.

Parameters

Return Values

Return code Comments

CLRC SUCCESS Key store is supported

CLRC_ERROR NOT SUPPORTED Key store not supported

7.4.2. clrcLoadNamedKey

ClrcResult clrcLoadNamedKey (ClrcKeyHandle *hKey
const ClrcKeyName “*name,
ClrcPasswordHandle hPassword);

This routine loads a key from the key store with the appropriate name using the password if
appropriate.

Returns an error if the wrong password is supplied. It is not an error if a password is supplied
and none is required.

Parameters
hKey — handle to the key returned if no problems.

name — hame of the required key.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 39

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

hPassword — the password to use to access the key. If NULL then no password is available and

it will only open a key without a password.

Return Values

Return code Comments

CLRC_SUCCESS The call succeeded

CLRC_ERROR NOT FOUND There is no key with that name

CLRC_FRROR NOT SUPPORTED There is no key store

CLRC_ERROR ACCESS DENIED Wrong password

CLRC_ERROR NO MEMORY There is insufficient memory to load the key.

The key cache is full and there is insufficient space
to represent a key of this type.
CLRC ERROR PROGRAMMER A programmers error was detected

CLRC_ERROR CACHE FULL

7.4.3. clrcSaveNamedKey

ClrcResult clrcSaveNamedKey (ClrcKeyHandle hKey
const ClrcKeyName *name,
ClrcPasswordHandle hPassword);

This routine stores a key in the key store with the appropriate name using the password if
supplied. All subsequent access to the key will require that the correct password is supplied.

Parameters
hKey — handle to the key to be stored in the key store.
name — name for the new key.

hPassword — the password to use to access the key. If NULL then the key will be accessible

without a password.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR EXISTS There is already a key with that name

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com

40

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Return code Comments

CLRC_FRROR NOT SUPPORTED There is no key store
CLRC ERROR NOT FOUND There is no key with that handle
CLRC ERROR PROGRAMMER There is no password with that handle

7.4.4. clrcDeleteNamedKey

ClrcResult clrcDeleteNamedKey (const ClrcKeyName *name,
ClrcPasswordHandle hPassword);

This routine deletes a key from the key store using the password if supplied.
Parameters
name — name for the key to delete.

hPassword — the password to use to access the key. If NULL then the key must be accessible
without a password.

Return Values

Return code Comments

CLRC_SUCCESS The call succeeded

CLRC_ERROR NOT FOUND There is no key with that name
CLRC_ERROR ACCESS DENIED Wrong password or key is still loaded
CLRC_ERROR NOT SUPPORTED There is no key store

CLRC_ERROR PROGRAMMER A programmer’s error was detected

7.4.5. clrcGetNextKey

ClrcResult clrcGetNextKey (unsigned int *context,
ClrcKeyName *keyName,
ClrcPasswordHandle hPassword);
This routine allows the available keys accessible using the supplied password to be iterated.
Only keys using the specified password value will be returned: this means that you cannot list
the keys protected by a password unless you know that password. c1rcGetNextKey will not list
the names of keys that have no password.

lteration is started by setting the value pointed to by context to 0.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 41

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Each subsequent call to clrcGetNextKey which returns CLR SUCCESS, returns a key name and
updates the value pointed to by context.

When there are no more key names to return, the routine returns CLRC_NO MORE KEYS and sets
the value pointed to by context back to 0.

The value pointed to by context must not be modified between calls and the same context
pointer must be used in all calls. The value saved in the location pointed to by context is
implementation defined and its value cannot be relied on in any way.

The following example show how to use this subroutine:

unsigned int context = 0; /* start from the beginning */
ClrcPasswordHandle hPassword;
/* call clrcLoadPasswordObject () to assign valid password object handle to

hPassword */

status = clrcGetNextKey (&context, &keyName, hPassword) ;
while (status == CLR SUCCESS)
{

/* handle the returned key name */

status = clrGetNextKey (&context, &keyName, hPassword);

}
if (status != CLRC ERROR NO MORE KEYS)

{

/* handle error */
}
clrGetNextKey may not return all keys if keys are being created or destroyed while the iteration
is in progress.

The key name returned may be invalid by the time that the c1rcGetNextKey routine returns if
keys are being created or destroyed while the iteration is in progress.

Restoring the value of the iterator from a previous iteration will not necessarily maintain a
pointer to the same key or even work at all.

This routine should not be used to determine if a key name is free: you should just create it and
observe the return code. The problem is caused by Time Of Use/ Time Of Check (TOCTOU)
problems where a key appears or disappears after the routine returns and before the
subsequent use.

As a matter of security, this routine will return TEEC ERROR_ITEM NOT FOUND, if invoked with a
NULL clrcPasswordHandle. Keys with NULL password handles cannot be retrieved using this
routine.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 42

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Parameters
context — state of the enumeration: initialize to 0 and do not modify between calls.
keyName — name for the key.

hPassword — the password to use to access the key. If NULL then the key must be accessible
without a password.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR NO MORE KEYS All matching keys have been returned
CLRC_ERROR NOT SUPPORTED There is no key store

CLRC ERROR PROGRAMMER A programmers error was detected

7.4.6. clrcGetKeyPasswordObject

ClrcResult clrcGetKeyPasswordObject (
const ClrcKeyName “*keyName,
ClrcKeyName *passwordName) ;

This routine returns the name of the password object associated with the key name and returns
CLRC_SUCCESS. IF there is no such object then it returns CLRC_ERROR _NO_PASSWORD.

Parameters
keyName — name of the key whose associated password object we want.
passwordName — the name of the password object associated with the key.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC_ERROR NOT SUPPORTED There is no key store

CLRC ERROR NO MEMORY There is insufficient memory to load the password.
CLRC ERROR NO PASSWORD There is no password for this key

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 43

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Return code Comments

CLRC ERROR PROGRAMMER A programmers error was detected

7.5.1. clrcCreatePasswordObject

ClrcResult clrcCreatePasswordObject (
ClrcPasswordHandle *hPassword,
const ClrcKeyName *name,
const uint8 t *password,
uint32 t passwordLength) ;

This routine creates a new password object in the key store, loads it and returns a handle to it.
Parameters

hPassword — returned password handle.

name — name for the new password object.

password — the password to be used — may contain any byte values i.e. it is not restricted to
text.

passwordLength — length of the password buffer.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC_ERROR NOT SUPPORTED There is no key store

CLRC ERROR EXISTS There is already a password with that name

CLRC ERROR NO MEMORY There is insufficient memaory to load the
password.

CLRC ERROR CACHE FULL The key cache is full and there is insufficient
space to represent a password.

CLRC ERROR PROGRAMMER A programmers error was detected

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 44

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.5.2. clrcLoadPasswordObject

ClrcResult clrcLoadPasswordObject (
ClrcPasswordHandle *hPassword,
const ClrcKeyName “*name,
const ulnt8 t *password,
uint32 t passwordLength) ;

This routine loads a new password object from the key store and returns a handle to it if the
supplied password matches.

Parameters

hPassword — returned password handle.

name — name of the password object.

password — the password for the object.
passwordLength — length of the password buffer.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC_FRROR NOT SUPPORTED There is no key store

CLRC_ERROR ACCESS DENIED Wrong password supplied

CLRC ERROR NOT FOUND There is no possword of that name

CLRC ERROR NO MEMORY There is insufficient memory to load the
password.

CLRC ERROR CACHE FULL The key cache is full and there is insufficient
space to represent a password.

CLRC ERROR PROGRAMMER A programmers error was detected

7.5.3. clrcUnloadPasswordObject

ClrcResult clrcUnloadPasswordObject (
ClrcPasswordHandle hPassword) ;

This routine unloads a password handle.
Parameters

hPassword — password handle to unload.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 45

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded
CLRC ERROR NOT FOUND There is no password with that handle
CLRC ERROR PROGRAMMER A programmers error was detected

7.5.4. clrcDeletePasswordObject

ClrcResult clrcDeletePasswordObject (
const ClrcKeyName *name,
const uint8 t *password,
uint32 t passwordLength) ;

This routine deletes a password object. You have to specify the password to avoid denial of
service attacks.

Warning: deleting a password object renders all keys which are secured by the Password
Object inaccessible.

Parameters

name — name of the password object to delete.
password — the password for the object.
passwordLength — length of the password buffer.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC_FERROR NOT SUPPORTED There is no key store

CLRC ERROR NOT FOUND There is no password of that name

CLRC ERROR ACCESS DENIED Wrong password supplied or the object is still
loaded

CLRC ERROR PROGRAMMER A programmers error was detected

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 46

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.5.5. clrcChangePasswordObject

ClrcResult clrcChangePasswordObject (
ClrcPasswordHandle *hPassword,
const ClrcKeyName *name,

const ulnt8 t *password,

uint32 t passwordLength,
const ulnt8 t *newPassword,

uint32 t newPasswordLength) ;

This routine updates an existing password object to have a new password and returns a handle
to it. The old password must be supplied to avoid denial of service attacks.

Parameters

hPassword — returned password handle.

name — name of the password object.

password — the old password.

passwordLength — length of the password buffer.

newPassword — the new password to be used — may contain any byte values i.e. it is not
restricted to text.

newPasswordLength — length of the new password buffer.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC_ERROR NOT SUPPORTED There is no key store

CLRC ERROR NOT FOUND There is no password of that name

CLRC ERROR ACCESS DENIED Wrong password supplied or the object is still
loaded

CLRC ERROR PROGRAMMER A programmers error was detected

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 47

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.6.1. clrcCreateOperation

ClrcResult clrcCreateOperation (ClrcOperationHandle *hOp,

uint32 t algorithm,
uint32 t mode,
ClrcKeyHandle hKey,
ClrcKeyHandle hKeyExtra) ;

This routine creates a cryptographic operation allocating the appropriate amount of memory.
The routine can make use of the attributes of the keys to allocate sufficient memory.

The operation does not copy the keys, instead it just stores the key handle(s). It is the
programmer’s responsibility to ensure that the keys are not unloaded while the operation exists,
if this happens then a programmer error is forced.

The mode and key type(s) must match the algorithm or a programmer error is raised.
Parameters
hop — operation handle that will be returned by the routine if it succeeds.

algorithm — The identifier of an algorithm as defined in Table 9 — Algorithm definitions in
section 5.5 Algorithms.

mode — the identifier of the operation mode for this operation as defined in Table 10 —
Operation Modes in section 0

Operation Modes. Must match the algorithm.

hKey — the key to use for the algorithm. Must be a valid key handle of the correct type for the
algorithm. May be NULL if the operation does not use a key (e.g. hashing).

hKeyExtra — The additional key to use in algorithms which require two keys such as the AES
XTS algorithm. Must be NULL otherwise.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded
CLRC ERROR NO MEMORY There is insufficient memory to create the operation.
CLRC ERROR NOT SUPPORTED Algorithm is not supported by the implementation

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 48

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Return code Comments

CLRC ERROR PROGRAMMER A programmers error was detected

7.6.2. clrcFreeOperation

ClrcResult clrcFreeOperation (ClrcOperationHandle hOp) ;

This routine deletes the operation and invalidates the handle. There is no error if the keys have
already been unloaded.

Parameters
hop — operation handle which will be invalidated.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded
CLRC ERROR PROGRAMMER A programmers error was detected
CLRC ERROR BAD HANDLE The handle is invalid, perhaps it has already been

deleted. Normally this would be a programmer error
but it is a separate error here to simplify error
handling

7.6.3. clrcResetOperation

ClrcResult clrcResetOperation (ClrcOperationHandle hOp) ;

This routine resets the operation back to the state it was in immediately after it was created. It
may be called on any valid operation handle no matter what type of operation is in progress. All
intermediate results are deleted.

Parameters
hop — operation handle which will be reset.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedgecom 49

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.6.4. clrcCloneOperation

ClrcResult clrcCloneOperation (ClrcOperationHandle hOpSource,
ClrcOperationHandle *hOpDest) ;

This routine creates a new cryptographic operation allocating the appropriate amount of
memory and assigns all values store in the source operation to it. All the attributes and partial
results in the source operation are copied.

This function is useful in the following use cases:

e “Forking” a digest operation after feeding some amount of initial data
e Computing intermediate digests

The new operation stores the key handle(s) just as the original operation did. It is the
programmer’s responsibility to ensure that the keys are not unloaded while the operation exists,
if this happens then a programmer error is forced.

Parameters
hOopSource — operation handle that will have its contents cloned.
hOpDest — operation handle that will be returned by the routine if it succeeds.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR NO MEMORY There is insufficient memory to create the new
operation.

CLRC ERROR PROGRAMMER A programmers error was detected

7.7.1. clrcHashlInit

ClrcResult clrcHashInit (ClrcOperationHandle hOp) ;

This routine starts hashing operation on the specified operation.

Parameters

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 50

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

hop — operation handle which specifies the key and parameters to be used. Must be a HASH
mode operation.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

7.7.2. clrcHashUpdate

ClrcResult clrcHashUpdate (ClrcOperationHandle hOp,
const uint8 t *input,
uint32 t inputLen) ;

This routine adds additional data to a hash calculation. This operation must have been started
by a callto clrcHashInit andis ended by a call to clrcHashFinal.

The input data does not have to be a multiple of the block size in length. This routine may be
called multiple times to add additional data.

Parameters

hOop — operation handle which specifies the parameters to be used. Must have been started by
acallto clrcHashInit.

input — the data being input to the operation.
inputLen — the length of the input data.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 51

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.7.3. clrcHashFinal
ClrcResult clrcHashFinal (ClrcOperationHandle hOp,

const uint8 t *input,
uint32 t inputLen,
uint8 t *hash,
uint32 t *hashLen) ;

This routine processes the final data (supplied in input) along with any data supplied by
previous calls to clrcHashUpdate in a hash calculation. This operation must have been started
by acallto clrcHashInit.

The input data does not have to be a multiple of the block size in length.

The hash is written to hash data. The length of this is determined by the algorithm.
After this routine returns the operation handle can be deleted or re-initialized.
Parameters

hop — operation handle which specifies the key and parameters to be used. Must have been
started by a call to clrcHashInit.

input —the data being input to the operation.
inputLen —the length of the input data.

hash — the output buffer to receive data which has been processed by the operation. May be
NULL only if *hashLen is also O.

hashLen — Pointer to length of hash buffer. On input must contain the length of the buffer, on
output returns the number of bytes of data which was returned. See section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER for all behavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
- - handle, bad operation type

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section
N N N 7.1.3.3CLRC_ERROR_SHORT_BUFFER

These routines carry out all forms of symmetric encryption using block (e.g. AES) based ciphers.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 52

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.8.1. clrcSymmetriclnit

ClrcResult clrcSymmetricInit (ClrcOperationHandle hOp,
const uint8 t *IV,
uint32 t IVLen) ;

This routine starts an encryption or decryption operation using the key and parameters
specified by the operation.

Parameters

hOop — operation handle which specifies the key and parameters to be used. Must be an
ENCRYPT or DECRYPT mode operation.

IV — the initialization vector for use with this operation. May be NULL if 1vLen is O and the cipher
algorithm does not require an IV.

IvVLen — the length of the initialization vector.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

7.8.2. clrcSymmetricUpdate
ClrcResult clrcSymmetricUpdate (ClrcOperationHandle hOp,

const uint8 t *input,
uint32 t inputlen,
uint8 t *output,
uint32 t *outputLen) ;

This routine processes additional data in a symmetric encryption or decryption operation. This
operation must have been started by a call to clrcsymmetricInit and is ended by a call to

clrcSymmetricFinal.

The input data does not have to be a multiple of the block size in length. This routine may be
called multiple times to add additional data.

Output data is written to output. There is no guarantee that any call to clrcSymmetricUpdate
will generate an output since the underlying cryptographic operation may be block oriented in
which case only complete blocks can be returned.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 53

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Parameters

hOop — operation handle which specifies the key and parameters to be used. Must have been
started by a call to clrcSymmetricInit.

input —the data being input to the operation.
inputLen —the length of the input data.

output — the output buffer to receive data which has been processed by the operation. May
e NULL only if *outputLen is also 0.

outputLen — Pointer to length of output buffer. On input must contain the length of the buffer,
on output returns the number of bytes of data which was returned. See section 7.1.3.3 for alll
bbehavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3 CLRC_ERROR_SHORT _BUFFER

7.8.3. clrcSymmetricFinal

ClrcResult clrcSymmetricFinal (ClrcOperationHandle hOp,

const uint8 t *input,
uint32 t inputlen,
uint8 t *output,
uint32 t *outputlLen) ;

This routine processes the final data (supplied in input) along with any data supplied by
previous calls to clrcSymmetricUpdate in @ symmetric encryption or decryption operation. This
operation must have been started by a call to clrcSymmetricInit.

The input data does not have to be a multiple of the block size in length.
Output data is written to output.
After this routine returns the operation handle can be deleted or re-initialized.

Parameters

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedgecom 54

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

hop — operation handle which specifies the key and parameters to be used. Must have been
started by a call to clrcSymmetricInit.

input - the data being input to the operation.
inputLen —the length of the input data.

output — the output buffer to receive data which has been processed by the operation. May
e NULL only if *outputLen is also 0.

outputLen — Pointer to length of output buffer. On input must contain the length of the buffer,
on output returns the number of bytes of data which was returned. See section 7.1.3.3 for alll
bbehavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3CLRC_ERROR_SHORT_BUFFER

7.9.1. clrcMaclnit

ClrcResult clrcMACInit (ClrcOperationHandle hOp,
const uint8 t *1V,
uint32 t IVLen) ;

This routine starts the calculation of a Message Access Code using the key and parameters
specified by the operation.

Parameters

hOop — operation handle which specifies the key and parameters to be used. Must be a MAC
mode operation.

IV — the initialization vector for use with this operation. May be NULL if TvLen is O and the MAC
algorithm does not require an IV.

IVLen - thelength of the initialization vector.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 55

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Initialization vectors for HMAC and CMAC calculations are not used. Therefore, it is
recommended that 1v be set to NULL and IvLen be set to 0, as a matter of practice.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

7.9.2. clrcMacUpdate

ClrcResult clrcMACUpdate (ClrcOperationHandle hOp,
const uint8 t *input,
uint32 t inputLen) ;

This routine processes additional data in the calculation of a MAC. This operation must have
been started by a call to clrcMACInit andis ended by a call to c1rcMACFinish.

The input data does not have to be a multiple of the block size in length. This routine may be
called multiple times to add additional data.

Parameters

hop — operation handle which specifies the key and parameters to be used. Must have been
started by a call to clrcMACInit.

input — the data being input to the operation.

inputLen - the length of the input data.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 56

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.9.3. clrcMacFinal
ClrcResult clrcMACFinal (ClrcOperationHandle hOp,

const ulnt8 t *1input,
uint32 t inputLen,
uint8 t *mac,
uint32 t *maclen) ;

This routine processes the final data (supplied in input) along with any data supplied by
previous calls to c1rcMACUpdate when calculating a MAC value. This operation must have been
started by a call to clrcMACInit.

The input data does not have to be a multiple of the block size in length.

The MAC is written to mac. The length of MAC is determined by the algorithm.

Parameters

hop — operation handle which specifies the key and parameters to be used. Must have been
started by a call to clrcSymmetricInit.

input —the data being input to the operation.
inputLen —the length of the input data.

mac — the output buffer to receive data which has been processed by the operation. May be
NULL only if *macLen is also O.

macLen — Pointer to length of output buffer. On input must contain the length of the buffer, on
output returns the number of bytes of data which was returned. See section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER for all behavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3CLRC_ERROR_SHORT_BUFFER

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 57

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

These routines deal with Authenticated Encryption operations where the data is both
encrypted/decrypted and a verification tag is also generated/checked. This works with the
CLC_ALG_AES_CCM and CLC_ALG_AES_GCM algorithms.

7.10.1. clrcAEInit

ClcrResult clrcAEInit (ClrcOperationHandle hOp,
uint8 t *nonce,
uint32 t noncelen,
uint32 t taglen,
uint32 t AADLen,
uint32 t payloadLen);

Initialize an operation for an Authenticated Encryption operation.
Parameters

hop — operation handle which specifies the key and parameters to be used. Must be either an
ENCRYPT or a DECRYPT mode operation.

nonce — nonce or IV for the operation.
noncelLen — length in bytes of the nonce.
tagLen - size in bits of the authentication tag:

e For AES-GCM, can be 128,120, 112, 104, or 96
e For AES-CCM, can be 128,112, 96, 80, 64, 48, or 32

AADLen — Length in bytes of the additional data included in the authentication tag. Must be
set for AES-CCM, ignored for AES-GCM.

payloadLen — thelength of the payload in bytes. Must be set for AES-CCM, ignored for AES-
GCM.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type,

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 58

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.10.2. clrcAEUpdateAAD

ClcrResult clrcAEUpdateAAD (ClrcOperationHandle hOp,
uint8 t *AAData,
uint32 t AADLen);

Add an additional chunk of data to the authentication tag.
Parameters

hop — operation handle which specifies the key and parameters to be used. Must be either an
ENCRYPT or a DECRYPT mode operation.

AAData — bytes to add to the authentication tag.
AADLen — length in bytes of the additional AAD data.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type,

7.10.3. clrcAEUpdate

ClcrResult clrcAEUpdate (ClrcOperationHandle hOp,
uint8 t *input,
uint32 t inputLen,
uint8 t *output,
uint32 t *outputLen);

Encrypt or decrypt an addition chunk of data.

Input data does not have to be a multiple of block size. Subsequent calls to this function are
possible. Unless one or more calls of this function have supplied sufficient input data, no output
is generated.

Warning: when using this routine to decrypt the returned data may be corrupt since the
integrity check is not performed until all the data has been processed. If this is a concern then
only use the clrcAEDecryptFinal routine

Parameters

hOop — operation handle which specifies the key and parameters to be used. Must be either an
ENCRYPT or a DECRYPT mode operation.

input — bytes to encrypt or decrypt.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 59

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

inputLen — length in bytes of the input.

output — the output buffer to receive encrypted or decrypted data which has been processed
by the operation. May be NULL only if *outputLen is also 0.

outputLen — pointer to length of output buffer. On input must contain the length of the buffer,
on output returns the number of bytes of data which was returned. See section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER for all behavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type,

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3CLRC_ERROR_SHORT_BUFFER

7.10.4. clrcAEEncryptFinal

ClcrResult clrcAEEncryptFinal (ClrcOperationHandle hOp,
uint8 t *input,
uint32 t inputLen,
uint8 t *output,
uint32 t *outputlLen,
uint8 t *tag,
uint32 t *taglen);

Encrypt an addition chunk of data and finish encrypting. Return the tag as well.
Parameters

hop — operation handle which specifies the key and parameters to be used. Must be either an
ENCRYPT mode operation.

input — bytes to encrypt.
inputLen — Length in bytes of the input.

output — the output buffer to receive encrypted data which has been processed by the
operation. May be NULL only if *outputLen is also O.

outputLen — pointer to length of output buffer. On input must contain the length of the buffer,
on output returns the number of bytes of data which was returned. See section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER for all behavior.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 60

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

tag — the buffer to receive the authentication tag which has been processed by the operation.
May be NULL only if *tagLen is also 0.

tagLen — pointer to length of tag buffer. On input must contain the length of the buffer, on
output returns the number of bytes of data which was returned. See section 7.1.3.3 for all
bbehavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type,

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3CLRC_ERROR_SHORT_BUFFER

7.10.5. clrcAEDecryptFinal

ClcrResult clrcAEDecryptFinal (ClrcOperationHandle hOp,
uint8 t *input,
uint32 t inputLen,
uint8 t *output,
uint32 t *outputLen,
uint8 t *tag,
uint32 t taglen);

Decrypt an addition chunk of data and finish decrypting. Ensure that the supplied tag matches
that which is calculated.

Parameters

hop — operation handle which specifies the key and parameters to be used. Must be either an
a DECRYPT mode operation.

input — bytes to encrypt.
inputLen — lengthin bytes of the input.

output — the output buffer to receive encrypted data which has been processed by the
operation. May be NULL only if *outputLen is also 0.

outputLen — pointer to length of output buffer. On input must contain the length of the buffer,
on output returns the number of bytes of data which was returned. See section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER for all behavior.

©2024 SecEdge™ | PO Box 127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 61

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

tag — the buffer containing the expected authentication tag to be matched by the operation.
tagLen — length of tag buffer.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
B B handle, bad operation type,

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section
- - - 7.1.3.3CLRC_ERROR_SHORT_BUFFER

CLRC ERROR TAG MISMATCH Authentication tag does not match

7.11.1. clrcSign
ClrcResult clrcSign(ClrcOperationHandle hOp,

const ClrcTLV *parameters,
uint32 t parameterlLen,
const uint8 t *hash,

uint32 t hashLen,

uint8 t *signature,
uint32 t *signaturelen) ;

This routine signs a supplied hash value using the key stored in the operation. It returns the
signature

The input hash must be less than the length of the signing key, by how much depends on the
algorithm that is in use: no form of chaining is used.

Some of the signature algorithms may take additional parameters which are supplied in
parameters: the associated values are defined in Table 12.

Algorithm Attributes

CLRC_ALG RSASSA PKCS1 PSS MGF1 xxx CLRC_ATIR_RSA_PSS_SALT_ LENGTH
(integer). Number of bytes in the sallt.

Optional, if omitted the salt length is

equal to the hash length.
Table 12 - Asymmetric signature algorithm parameters

The signature is written to signature. The length of signature is determined by the algorithm.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 62

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Parameters

hOop — operation handle which specifies the key and parameters to be used. Must be a SIGN or
VERIFY mode operation.

parameters — special parameters for the signature algorithm from Table 12 or NULL if there are
none.

parameterLen —length of parameters.
hash — the data to sign.
hashLen — the length of the hash.

signature — the output buffer to receive the signature. May be NULL only if *signatureLen is
also 0.

signatureLen — Pointer to length of signature buffer. On input must contain the length of the
buffer, on output returns the number of bytes of data which was returned. See section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER for all behavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3CLRC_ERROR_SHORT_BUFFER

7.11.2. clrcVerify

ClrcResult clrcVerify (ClrcOperationHandle hOp,

const ClrcTLV *parameters,
uint32 t parameterlen,
const uint8 t *hash,

uint32 t hashLen,

const uint8 t *signature,
uint32 t signaturelen) ;

This routine verifies a supplied hash value against a signature using the key stored in the
operation.

The input hash must be less than the length of the signing key, by how much depends on the
algorithm that is in use: no form of chaining is used.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 63

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API

Some of the signature algorithms may take additional parameters which are supplied in
parameters: the associated values are defined in Table 12 - Asymmetric signature algorithm
parameters in section 7.11.1 clrcSign.

Parameters

hOop — operation handle which specifies the key and parameters to be used. Must be a SIGN or

VERIFY mode operation.

parameters — special parameters for the signature algorithm from Table 12 - Asymmetric
signature algorithm parameters or NULL if there are none.

parameterLen —length of parameters.

hash — the data to verify the hash of

hashLen — the length of the hash

signature — the buffer containing the signature to verify.
signatureLen — The length of the signature buffer.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as
bad handle, bad operation type

CLRC ERROR SIGNATURE INVALID The signature does not match the hash.

Some asymmetric algorithms can encrypt data using the public part of the key and allow its
decryption using the private part.

7.12.1. clrcAsymmetricEncrypt

ClrcResult clrcAsymmetricEncrypt (ClrcOperationHandle hOp,

const ClrcTLV *parameters,
uint32 t paramlen,
const uint8 t *input,
uint32 t inputLen,
uint8 t *output,
uint32 t *outputLen) ;

This routine encrypts a block of data using the public key stored in the operation.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com

EDES-0001-Rev E.

64

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

The maximum size of the input data depends on the padding algorithm which is being used. In
most cases it must be somewhat less than the length of the encrypting key since some
padding must be present.

The exception is where there is no padding (CLRC ALG RSA NOPAD) when the input data must
e precisely the same length as the encrypting key.

Some of the encryption algorithms may take additional parameters which are supplied in
parameters: the associated values are defined in Table 13.

Algorithm Attributes

CLRC_ALG RSASSA PKCS1 OAEP MGF1 xxx CLRC_ATTR_RSA_OAEP_LABEL
(binary). Byte string representing the

label. If omitted an empty label is

assumed.
Table 13 - Asymmetric encryption algorithm parameters

The encrypted output is written to output.
Parameters

hOop — operation handle which specifies the key and parameters to be used. Must be an
ENCRYPT_AS mode operation.

parameters — special parameters for the encryption algorithm from Table 12 - Asymmetric
signature algorithm parameters in section 7.11.1 clrcSign or NULL if there are none.

paramLen —length of parameters.
input - the data to encrypt.
inputLen - the length of the input.

output - the output buffer to receive the encrypted data. May be NULL only if *outputLen is
also 0.

outputLen — Pointer to length of output buffer. On input must contain the length of the buffer,
on output returns the number of bytes of data which was returned. See section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER for all behavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 65

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Return code Comments

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type,
CLRC ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3CLRC_ERROR_SHORT_BUFFER

7.12.2. clrcAsymmetricDecrypt

ClrcResult clrcAsymmetricDecrypt (ClrcOperationHandle hOp,

const ClrcTLV *parameters,
uint32 t paramlen,
const uint8 t *input,
uint32 t inputLen,
uint8 t *output,
uint32 t *outputLen) ;

This routine decrypts a value using the private key stored in the operation.

The output will always be the same size as the original input to the encryption algorithm, i.e. all
padding will be removed.

Some of the decryption algorithms may take additional parameters which are supplied in
parameters: the associated values are defined in Table 13 - Asymmetric encryption algorithm
parameters in section 7.12.1 clrcAsymmetricEncrypt.

The decrypted output is written to output.
Parameters

hop — operation handle which specifies the key and parameters to be used. Must be a
DECRYPT_AS mode operation.

parameters — special parameters for the encryption algorithm from Table 13 - Asymmetric
encryption algorithm parameters or NULL if there are none.

paramLen —length of parameters.
input - the data to decrypt. Must be less than or equal to the length of the key.
inputLen — thelength of the input.

output — the output buffer to receive the decrypted data. May be NULL only if *outputLen is
also 0.

outputLen — Pointer to length of output buffer. On input must contain the length of the buffer,
on output returns the number of bytes of data which was returned. See section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER for all behavior.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 66

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3 CLRC_ERROR_SHORT _BUFFER

7.13.1. clrcDeriveValue

ClrcResult clrcDeriveValue (ClrcOperationHandle hOp,

const ClrcTLV *parameters,
uint32 t paramlen,
uint8 t *output,
uint32 t *outputLen) ;

This routine combines a private key with a public key and/or other information to create a

EDES-0001-Rev E.

derived value. The public key and other information are specified via the parameters argument

which may have the values specified in Table 14 and no others. The attributes are required
unless marked as optional.

Key Type Attribute values in parameters

CLRC TYPE DH KEYPAIR CLCR ATTR DH PUBLIC VALUE

CLCR_ATTR _ECC PUBLIC VALUE X
CLRC_TYPE ECDH KEYPAIR
CLRC_ATTR_ECC PUBLIC VALUE Y

CLRC ATTR ECDH X9 63 PRF ALG
CLRC_TYPE ECDH KEYPATR

(using ANSI x9.63 kpp) | CLRC_ATTR ECDH X9 _63_DKM_LENGTH

CLRC_ATTR ECDH X9 63 SHARED DATA (optional)

CLRC_ATTR_HKDF_OKM LENGTH
CLRC_TYPE HKDF_IKM CLRC_ATTR_ HKDF_SALT (optional)
CLRC_ATTR_HKDF_INFO (optional)

CLRC_ATTR_CONCAT KDF DKM LENGTH
CLRC_TYPE CONCAT KDF % - - - =
- - - CLRC_ATTR_CONCAT KDF OTHER_ INFO (optional)

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com

67

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Key Type Attribute values in parameters

CLRC_ATTR_PBKDF2 DKM LENGTH
CLRC_TYPE PBKDF2 PASSWORD CLRC_ATTR PBKDF2 ITERATION COUNT
CLRC_ATTR_PBKDF2 SALT (optional)

Table 14 - Attribute Values in clreDeriveValue

The derived value is written to output. For the DH and ECDH derivations, the size of the derived
value is given by the group size. For those cases where a KDF is used, the size of the output is
given by the key material length parameter. If the provided output buffer is smaller than the
length given above, then CLRC_ERROR_SHORT _BUFFER is returned along with the required
length. The output is _not_ truncated to fit a short buffer.

For ECDH derivation, the shared secret is returned if only the public key parameters are
supplied. If the X9.63 parameters are also provided, then the shared secret is passed to the KDF
with the other parameters and the output of that is returned.

Parameters

hop — operation handle which specifies the key and parameters to be used. Must be a DERIVE
mode operation.

parameters — required attribute values to define the public key and/or other information.
paramLen —length of parameters.

output - the output buffer to receive the derived value. May be NULL only if *outputLen is also
0.

outputLen — Pointer to length of output buffer. On input must contain the length of the buffer,
on output returns the number of bytes of data which was returned. See section 7.1.3.3
CLRC_ERROR_SHORT_BUFFER for all behavior.

Return Values
Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
B B handle, bad operation type

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section
- N N 7..3.3CLRC _ERROR_SHORT_BUFFER

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 68

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.13.2. clrcDeriveKey

ClrcResult clrcDeriveKey (ClrcOperationHandle hOp,

const ClrcTLV *parameters,
uint32 t paramlen,
uint32 t keyType,
ClrcKeyHandle *hDerivedKey) ;

This function is very similar to clrcDeriveValue except that it returns the handle to a newly
created key rather than the derived value. The operation handle and parameters arguments
are treated exactly the same as in the above function. The derived value is stored as the
private attribute inside the new key. The key has its CLRC_ATTR_EXPORT_AS_PLAIN attribute set
to O unless it is of the CLRC_TYPE_DATA_OBJECT type.

Only KDF keys and keys with secret values can be created with this function. Creating
asymmetric keys is not supported.

The created key size is given by the length of the derived value as described in the section
above. If a KDF is used, then the parameter for the derived key material length is used to
determine the key size.

Parameters

hop — operation handle which specifies the key and parameters to be used. Must be a DERIVE
mode operation.

parameters — required attribute values to define the public key and/or other information.
paramLen —length of parameters.

keyType — the type of the newly created key.

hDerivedKey — key handle which will be returned.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected such as bad
handle, bad operation type

CLRC ERROR NO MEMORY There is insufficient memory to create the key

CLRC ERROR NOT SUPPORTED The key type, key size or a parameter attribute

type is not supported

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 69

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.14.1. clrcGetRandom

ClrcResult clrcGetRandom(uint8 t *randomBuffer,
uint32 t randomBufferLength);

This routine generates randomBufferLength bytes of random data and returns it in

randomBuffer.

Parameters

randomBuf fer — buffer to receive random bytes.

randomBuf ferLength — number of bytes of random data that are required.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR PROGRAMMER A programmers error was detected

These routines are used to decode opaque objects using the information stored within their
identifiers. The decoding operation is initialized by loading the information within the identifier.
The decrypting key, encryption algorithm ID, expected output size and hash are extracted from
the identifier and stored within an operation context in the CoreLockr™ Crypto TA. The opaque
object is decrypted using the standard Update/Final type calls, with the total size and hash of
the decrypted output being tracked within the context. At the end of the decryption operation,
the size and hash are checked against the expected values from the identifier to verify that the
decoding was successful. 10 Appendix: Opaque Object Types and Algorithms lists the supported
cipher algorithms and MAC algorithms.

7.15.1. clrcCreateOpaqueObjectCtx
ClrcResult clrcCreateOpagqueObjectCtx (ClrcOpaqueObjectCtx *hCtx) ;

This routine creates an opaque object decoding context, allocating the appropriate amount of
memory. The context can be reused to decode multiple opaque objects if desired.

Parameters

hCtx — context handle that will be returned by the routine if it succeeds.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 70

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API

Return Values

Return code Comments

CLRC SUCCESS The call succeeded
CLRC ERROR NO MEMORY Insufficient memory to complete operation
CLRC ERROR PROGRAMMER A programmer’s error was detected

7.15.2. clrcFreeOpaqueObjectCtx
ClrcResult clrcFreeOpaqueObjectCtx (ClrcOpaqueObjectCtx hCtx) ;

This routine deletes the context and invalidates the handle. The key and operations stored in
the context are freed, as well.

Parameters
hctx — context handle which will be invalidated.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded
CLRC ERROR NOT FOUND Invalid context handle
CLRC ERROR PROGRAMMER A programmer’s error was detected

7.15.3. clrcOpaqueObjectinit

ClrcResult clrcOpaqueObjectInit (ClrcOpaqueObjectCtx hCtx,
const uint8 t *identifier,
uint32 t identifierLen) ;

This routine starts an opaque object decoding operation using the key and parameters
specified within the opaque object identifier.

Parameters
hctx — handle which specifies the context that is to be initialized.
identifier —the opaque object identifier.

identifierLen — the length of the identifier.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com

EDES-0001-Rev E.

n

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

Return Values

Return code Comments

CLRC_SUCCESS The call succeeded

CLRC_ERROR NOT FOUND Invalid context handle

CLRC_ERROR PROGRAMMER A programmer’s error was detected
CLRC_ERROR IDENTIFIER INVALID Identifier format wrong/corrupted

CLRC_ERROR NO MEMORY Insufficient memory to complete operation
CLRC_ERROR_STGNATURE TNVALID Failure to verify signature

CLRC_ERROR NOT SUPPORTED Either public key type or MAC type not supported

7.15.4. clrcOpaqueObjectUpdate
ClrcResult clrcOpaqueObjectUpdate (ClrcOpaqueObjectCtx hCtx,

const uint8 t *input,
uint32 t inputlen,
uint8 t *output,
uint32 t *outputlLen) ;

This routine processes additional data in the opagque object decoding operation. This operation
must have been started by a call to clrcOpagueObjectInit and is ended by a call to
clrcOpaqueObjectFinal.

The encrypted input data does not have to be a multiple of the block size in length. This routine
may be called multiple times to add additional data.

Decrypted data is written to output. There is no guarantee that any call to this routine will
generate an output since the underlying cryptographic operation may be block oriented, in
which case only complete blocks can be returned.

Parameters

hCctx — context handle which specifies the key and parameters to be used. Must have been
started by a call to clrcOpagueObjectInit.

input - the encrypted opaque object data being input to the operation.
inputLen — the length of the input data.

output — the output buffer to receive data which has been decrypted by the operation. May be
NULL only if *outputLen is 0.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 72

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

outputLen — pointer to length of the output buffer. On input, must contain the length of the
buffer, on output returns the number of bytes of data which was returned. See section 7.1.3.3 for
all behavior.

Return Values

Return code Comments

CLRC_SUCCESS The call succeeded

CLRC_ERROR NOT FOUND Invalid context handle

CLRC_ERROR PROGRAMMER A programmer’s error was detected
CLRC_ERROR SHORT BUFFER Insufficient space for the output — see section

7.1.3.3 CLRC_ERROR_SHORT _BUFFER

7.15.5. clrcOpaqueObjectFinal
ClrcResult clrcOpagqueObjectFinal (ClrcOpaqueObjectCtx hCtx,

const uint8 t *input,
uint32 t inputLen,
uint8 t *output,
uint32 t *outputLen) ;

This routine processes the final encrypted data (supplied in input) along with any previous calls
to clrcOpaqueObjectUpdate in AN opaque object decoding operation. This operation must
have been started by a call to clrcOpaqueObjectInit.

The input data does not have to be a multiple of the block size in length.
Decrypted data is written to output.

The total size and hash of the decrypted data is checked against the information in the
identifier to verify that the decoding was successful.

After this routine returns, the operation handle can be freed or re-initialized.
Parameters

hCtx — context handle which specifies the key and parameters to be used. Must have been
started by a callto clrcOpaqueObjectInit.

input — the encrypted opaque object data being input to the operation.

inputLen — the length of the input data.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 73

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

output — the output buffer to receive data which has been decrypted by the operation. May be
NULL only if *outputLen is 0.

outputLen — pointer to length of the output buffer. On input, must contain the length of the
buffer, on output returns the number of bytes of data which was returned. See section 7.1.3.3 for
all behavior.

Return Values

Return code Comments

CLRC SUCCESS The call succeeded

CLRC ERROR NOT FOUND Invalid context handle

CLRC ERROR PROGRAMMER A programmer’s error was detected

CLRC ERROR SHORT BUFFER Insufficient space for the output — see section
7.1.3.3 CLRC_ERROR_SHORT_BUFFER

CLRC ERROR TAG MISMATCH Authentication tag does not match — the decoded

output verification failed.

These routines manipulate a list of attributes in c1rcTLV format (see section 5.2 Key Attributes).

They are simple utilities and do not make use of any cryptographic services.

7.16.1. clrcAttrGetSize

uint32 t clrcAttrGetSize (const ClrcTLV *a);

Returns the total byte size of the c1rcTLV structure including the header, value and padding.

7.16.2. clrcAttrGetNext

const ClrcTLV* clrcAttrGetNext (const ClrcTLV *a,
const ClrcTLV *attributes,
uint32 t attributesLength);

Return a pointer to the next attribute after a in the list of attributes in attributes which is of
length attributesLength bytes or NULL if a is the last attribute.

If 2 points to an attribute which is outside the supplied list of attributes the routine returns NULL

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 74

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

7.16.3. clrcAttrFind

const ClrcTLV* clrcAttrFind(uint32 t type,
const ClrcTLV *attributes,
uint32 t attributesLength);
Returns a pointer to the first attribute with the requested type within the attributes array

(which has a length of attributesLength bytes), or NULL if no such attribute is found.

7.16.4. clrcAttrGetFormat

enum ClrcAttrFmt { CLRC_ATTR FMT UNKNOWN, CLRC ATTR FMT I,
CLRC ATTR FMT H, CLRC _ATTR FMT B };
ClrcAttrFmt clrcAttrGetFormat (const ClrcTLV *a);
Return the format of the supplied c1rcTLV structure. The attribute formats are defined in Table

5 — Attribute Formats in section 5.2 Key Attributes.

7.16.5. clrcAttrSet

ClrcResult clrcAttrSet (ClrcTLV *attributes,
uint32 t *attributesLength,
int numAttributes,
<)
Writes numAttributes attributes to the attributes buffer which contains *attributesLength

bytes.

On exit *attributesLength is set to the number of bytes written to the attributes array. If the
result would exceed *attributesLength bytes then the routine will write the number of
required bytes to *attributesLength and return CLRC ERROR SHORT BUFFER.

The attributes to include are supplied as additional arguments to the routine. The first such
argument for each attribute is the attribute type and the subsequent arguments depend on
the attribute’s format (see section 5.2 Key Attributes) as shown in Table 15.

Attribute Format (see Arguments

Table 5 — Attribute
Formats)

| uint32 t value
H uint32 t length, uint8 t* buffer

B uint32 t length, uint8 t* bignum

Table 15 - cilrcAttrSet Arguments defined by attribute types

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 75

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

The following examples show the use of this routine:

#define ATTRBUFSIZE 64
ClrcResult res;

uint8 t attrbuf[ATTRBUFSIZE];
uint32_t attrlen = ATTRBUFSIZE;

uint8 t key[32] = “"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXKKX"”
res = clrcAttrSet ((ClrcTLV*)attrbuf, &attrlen, 2,
CLRC_ATTR EXPORT AS PLAIN, 1, // ATTR FMT I

CLRC_ATTR SECRET VALUE, 32, key); // ATTR FMT H

Example using value 0x260445 as CLRC_ATTR RSA PUBLIC EXPONENT, an attribute in “B”
(bignum) format:

#define ATTRBUFSIZE 2048
clrcResult res;
uint8_t attrbuf [ATTRBUFSIZE] ;
uint32_t attrlen = ATTRBUFSIZE;
static uint8 t pub exp[] = { 0x26, 0x04, 0x45 };
res = clrcAttrSet ((ClrcTLV*)attrbuf, &attrlen, 2,
CLRC ATTR EXPORT AS PLAIN, O,
CLRC _ATTR RSA PUBLIC EXPONENT, sizeof (pub exp), pub exp);

7.16.6. clrcAttrSetV

ClrcResult clrcAttrSetV(ClrcTLV *attributes,
uint32 t *attributesLength,
int numAttributes,
va list args);
Writes numAttributes attributes to the attributes buffer which contains *attributesLength

bytes.

On exit *attributesLength is set to the number of bytes written to the attributes array. If the
result would exceed *attributesLength bytes then the routine will write the number of
required bytes to *attributesLength and return CLRC_ERROR SHORT BUFFER.

The attributes to include are supplied in args. The first such argument for each attribute is the
attribute type and the subsequent arguments depend on the attribute’s format (see section 5.2
Key Attributes) as shown in Table 15 - clrcAttrSet Arguments defined by attribute types.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 76

https://www.secedge.com/

EMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

8. REFERENCES

[1] FIPS 186-4

[2] ECDH: NIST SP 800-56A

[3] AES: FIPS-197

[4] SHA-256: FIPS 180-4

[5] NIST Recommended Curves for Government use

[6] NIST SP800-56AR2

[7] HMAC — RFC 2104

[8] RFC1321-MD5

[9] GlobalPlatform Internal Core API V1.1

[10] NIST SP800-56B

1] Internet Engineering Task Force (IETF), "HKDF RFC5869
[12] NIST, "Concat KDF (aka the Single Step KDF) NIST-SP800-56Ar2
[13] IETF, "PBKDF2 RFC2898

[14] D.R.L Brown, "ANSI X9.63 KDF," Certicom Corp

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 77

https://www.secedge.com/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc1321
http://www.globalplatform.org/specificationsdevice.asp
http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf
https://datatracker.ietf.org/doc/rfc5869/
https://csrc.nist.gov/publications/detail/sp/800-56a/rev-2/archive/2013-06-05
https://datatracker.ietf.org/doc/html/rfc2898
https://www.secg.org/sec1-v2.pdf

EmMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

9. APPENDIX: OPAQUE KEY TYPES AND ALGORITHMS

Type of key to be packaged:

KEY AES

KEY DES3

KEY RSA KEYPAIR
KEY RSA PUBLIC
KEY DSA KEYPAIR
KEY DSA PUBLIC
KEY ECDSA KEYPAIR
KEY ECDSA PUBLIC
KEY ECDH KEYPAIR
KEY ECDH PUBLIC
KEY HMAC MD5

KEY HMAC SHAl
KEY HMAC SHA224
KEY HMAC SHA256
KEY HMAC SHA384
KEY HMAC SHA512
DATA OBJECT

Cipher algorithms:

AES ECB
AES CBC
AES CTR
AES OFB
AES CFB

MAC algorithms:

HMAC SHA1
HMAC SHA224
HMAC SHA256
HMAC SHA384
HMAC SHAS512
AES CMAC

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 78

https://www.secedge.com/

EmMSPARK™ Suite: CoreLockr™ Cryptographic API EDES-0001-Rev E.

10. APPENDIX: OPAQUE OBJECT TYPES AND ALGORITHMS

Cipher algorithms:

AES ECB
AES CBC
AES CTR
AES OFB
AES CFB

MAC algorithms:

HMAC SHAI
HMAC SHA224
HMAC SHA256
HMAC SHA384
HMAC SHA512
AES CMAC

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1425 654 2048 | www.secedge.com 79

https://www.secedge.com/

	1. Table of Contents
	2. Introduction
	2.1. Philosophy

	3. Architecture
	3.1. Client process
	3.2. CoreLockrTM Cryptographic API
	3.3. CoreLockrTM Cryptographic Protocol (CCP)
	3.4. CoreLockrTM Session API
	3.5. CoreLockrTM API
	3.6. CoreLockrTM Service
	3.7. CoreLockrTM Cryptographic Executor (CCE)
	3.8. Key Store

	4. Concepts
	4.1. Handle
	4.2. CoreLockrTM Cryptographic Executor (CCE)
	4.3. Key
	4.4. Key Handle
	4.5. Key Blob
	4.6. Key Loading
	4.7. Key Store
	4.7.1. Password Objects

	4.8. Data Objects
	4.9. Operation
	4.10. Key Types
	4.11. Hash Algorithms

	5. Types and constants
	5.1. Header File
	5.2. Key Attributes
	5.3. Required Key Attributes to Create a Key
	5.4. Required Key Attributes When Importing Keys
	5.5. Algorithms
	5.6. Operation Modes

	6. CoreLockr Session API
	6.1. Header Files
	6.2. Sessions, Threads and General Concepts
	6.3. Session Opening and Closing
	6.3.1. clrcOpenSession
	6.3.2. clrcOpenSessionEx
	6.3.3. clrcCloseSession

	7. CoreLockrTM Cryptographic API
	7.1. General Concepts
	7.1.1. Basic Types
	7.1.2. Blocking Interface
	7.1.3. Error Handling
	7.1.3.1. Success
	7.1.3.2. Programmer Errors
	7.1.3.3. CLRC_ERROR_SHORT_BUFFER
	7.1.3.4. Return Codes

	7.2. Key Loading
	7.2.1. clrcUnloadKey
	7.2.2. clrcImportKey
	7.2.3. clrcCreateKey
	7.2.4. clrcSaveOpaqueKeyEx
	7.2.5. clrcSaveOpaqueKey

	7.3. Key Export
	7.3.1. clrcGetAttribute
	7.3.2. clrcGetAllAttributes

	7.4. Key Stores
	7.4.1. clrcKeyStoreExists
	7.4.2. clrcLoadNamedKey
	7.4.3. clrcSaveNamedKey
	7.4.4. clrcDeleteNamedKey
	7.4.5. clrcGetNextKey
	7.4.6. clrcGetKeyPasswordObject

	7.5. Password Objects
	7.5.1. clrcCreatePasswordObject
	7.5.2. clrcLoadPasswordObject
	7.5.3. clrcUnloadPasswordObject
	7.5.4. clrcDeletePasswordObject
	7.5.5. clrcChangePasswordObject

	7.6. Cryptographic Operations
	7.6.1. clrcCreateOperation
	7.6.2. clrcFreeOperation
	7.6.3. clrcResetOperation
	7.6.4. clrcCloneOperation

	7.7. Hashing
	7.7.1. clrcHashInit
	7.7.2. clrcHashUpdate
	7.7.3. clrcHashFinal

	7.8. Symmetric Cryptography Functions
	7.8.1. clrcSymmetricInit
	7.8.2. clrcSymmetricUpdate
	7.8.3. clrcSymmetricFinal

	7.9. MAC functions
	7.9.1. clrcMacInit
	7.9.2. clrcMacUpdate
	7.9.3. clrcMacFinal

	7.10. Authenticated Encryption
	7.10.1. clrcAEInit
	7.10.2. clrcAEUpdateAAD
	7.10.3. clrcAEUpdate
	7.10.4. clrcAEEncryptFinal
	7.10.5. clrcAEDecryptFinal

	7.11. Asymmetric Signature Functions
	7.11.1. clrcSign
	7.11.2. clrcVerify

	7.12. Asymmetric Encryption Functions
	7.12.1. clrcAsymmetricEncrypt
	7.12.2. clrcAsymmetricDecrypt

	7.13. Key Derivation
	7.13.1. clrcDeriveValue
	7.13.2. clrcDeriveKey

	7.14. Random numbers
	7.14.1. clrcGetRandom

	7.15. Opaque Object Decoding
	7.15.1. clrcCreateOpaqueObjectCtx
	7.15.2. clrcFreeOpaqueObjectCtx
	7.15.3. clrcOpaqueObjectInit
	7.15.4. clrcOpaqueObjectUpdate
	7.15.5. clrcOpaqueObjectFinal

	7.16. Attribute Manipulation Routines
	7.16.1. clrcAttrGetSize
	7.16.2. clrcAttrGetNext
	7.16.3. clrcAttrFind
	7.16.4. clrcAttrGetFormat
	7.16.5. clrcAttrSet
	7.16.6. clrcAttrSetV

	8. References
	9. Appendix: Opaque Key types and Algorithms
	10. Appendix: Opaque Object Types and Algorithms

