

EmSPARK™ Suite
CoreLockrTM Libraries User Guide

January 25, 2024 | Version 3.1

THIS DOCUMENT IS PROVIDED BY SECeDGE. THIS DOCUMENT, ITS CONTENTS, AND THE SECURITY
SYSTEM DESCRIBED SHALL REMAIN THE EXCLUSIVE PROPERTY OF SECeDGE.

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 2

 EmSPARK Suite: CoreLockr Libraries User Guide

1. TABLE OF CONTENTS

1. TABLE OF CONTENTS ... 2

2. CORELOCKR LIBRARIES .. 5

2.1. Acronyms and Terminology ... 5

2.2. EmSPARK Suite Contents ... 6

2.3. CoreLockr APIs .. 7

2.4. Preinstalled Keys and Certificates in the TEE .. 8

3. CORELOCKR CRYPTO API .. 10

3.1. Key Management ... 11
3.2. Key Store ... 12

3.3. Access to Provisioned Keys .. 12

3.4. Cryptographic operations .. 12

3.5. Opaque Keys .. 13

3.6. Opaque Objects ... 13

3.7. Opaque Keys and Opaque Objects Usage .. 13

3.8. Examples .. 13

3.8.1. Key Management and Provisioned Key Access Example .. 14

3.8.2. Key Store Example .. 15

4. CORELOCKR CRYPTO API – OPAQUE KEYS ... 16

4.1. Creating and Storing Opaque Keys ... 17

4.1.1. Creating Opaque Key Packages.. 17

4.1.2. Saving Opaque Key on Device Key Store .. 18

4.2. Opaque Key Example .. 19

5. CORELOCKR CRYPTO API – OPAQUE OBJECTS.. 20

5.1. Creating and Decrypting Opaque Objects .. 21
5.2. Opaque Object Example .. 23

5.2.1. Executing the Example ... 24

6. CORELOCKR PAYLOAD VERIFICATION AND KEY UTILITIES API.. 25

6.1. Payload Verification Example .. 26

6.1.1. Background ... 27

6.1.2. Executing the Example ... 28

6.2. Key Utilities Example .. 30

6.2.1. Background .. 30

6.2.2. Executing the Example ... 31

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 3

 EmSPARK Suite: CoreLockr Libraries User Guide

7. CORELOCKR CRYPTO OPENSSL ENGINE API .. 32

7.1. OpenSSL with Crypto in TrustZone for Secure Communication Example ... 33

7.1.1. Background .. 33

7.1.2. Executing the Example ... 34

7.2. OpenSSL with Crypto in TrustZone for Cryptographic Functions Example... 34

7.2.1. Background .. 35

7.2.2. Executing the Example ... 35

7.3. OpenSSL Using Named Keys Stored in the TEE Example ... 37

7.3.1. ECDSA Key Creation and Storing in the Key Store .. 37

7.3.2. Named Key Use with OpenSSL .. 38

7.3.3. Named Key Deletion from the Key Store .. 39

7.4. OpenSSL Command Line .. 40

8. CORELOCKR TLS IO API .. 40

8.1. Communication with a Server Example .. 41
9. CORELOCKR SECURE CERTIFICATES API .. 42

9.1. Provisioned Certificates ... 44

9.2. Certificate Store .. 46

9.3. Certificate Authority Management Example .. 47

9.3.1. Background .. 47

9.3.2. Executing the Example ... 49

9.4. Connecting to AWS IoT Core .. 51
9.4.1. Background .. 51
9.4.2. Linux Development Environment: Prepare Application and Key for Certificate Updates 54

9.4.3. Device: Extract OEM Device Certificate Signing Request .. 54

9.4.4. Linux: Prepare User’s OEM Root Certificate and OEM Device Certificate 55

9.4.5. Board: Customize the Device Certificate and OEM Root Certificate .. 57

9.4.6. AWS Console: Configure User’s Account for AWS TLS Example ... 59

9.4.7. Linux Development Environment: Configure and Build TLS AWS Example Application 63

9.4.8. Board: Execute the TLS AWS Example Application ... 63

10. CORELOCKR SECURE STORAGE API .. 68

10.1. Secure Storage Example .. 68

10.1.1. Background .. 68

10.1.2. Executing the Example ... 69

APPENDIX A: SUPPORTED CRYPTOGRAPHIC OPERATIONS .. 71

APPENDIX B: POLICY ... 75

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 4

 EmSPARK Suite: CoreLockr Libraries User Guide

APPENDIX C: LAMBDA FUNCTION ... 76

FIGURES
Figure 1 EmSPARK Architecture .. 7

Figure 2 Opaque Keys ... 17

Figure 3 Opaque Objects ... 22

Figure 4 Provisioned Certificate Management Flow ... 46

Figure 5 Certificate Store Management Flow .. 47

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 5

 EmSPARK Suite: CoreLockr Libraries User Guide

2. CORELOCKR LIBRARIES

This document is an overview of the EmSPARK Security Suite contents, CoreLockr APIs’
capabilities and included example applications. The EmSPARK Suite enables and makes it easy
for customers to securely store and isolate keys and certificates. TrustZone® with Security Suite
separates domains for security purposes and provides chaining to the provisioned root of trust.
The EmSPARK Suite provides the following advantages:

1. IP protection: unique keys are provisioned or generated on the device ensuring secrets used
to protect the firmware are never exposed.

2. HW/SW security isolation: two operating systems are enabled – TEE (CoreTEE) and Linux
(Rich OS) – and HW security features are segregated in the secure domain (CoreTEE).

The CoreLockr™ APIs are C libraries for development of Client Applications that execute in the
Rich OS. The APIs rely on Trusted Applications (TAs) to execute operations in the TrustZone.
EmSPARK™ incorporates a cryptographic engine running in CoreTEE that can be used in Linux
through its APIs or via OpenSSL. In addition, the Suite supplies other C APIs for performing
security-specific functions that are common in IoT applications. The Suite, through HW/SW
isolation, allows customers to deploy for end products:

+ IP protection
+ Secure communication
+ Secure payload verification
+ Secure storage
+ Keys / Certificates provisioning and storage
+ Unique device certificate (unique identity) creation

Devices provisioned with the EmSPARK™ Security Suite are also EmPOWER™ enabled. EmPOWER™
is a SaaS solution that provides essential cloud services needed to secure, provision, update and
manage devices. During provisioning, keys and certificates that support EmPOWER™ are installed
on the device and as such are part of the suite contents explained in the next section. This
document does not explain EmPOWER™, for information please contact SecEdge Inc.

2.1. Acronyms and Terminology
Certificate
Store

Non-volatile storage of certificates in encrypted form.
Managed using the Secure Certificates API.

Client
Application

An application that runs in the Rich OS and uses the
CoreLockr APIs to access facilities provided by TAs running in
the TEE.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 6

 EmSPARK Suite: CoreLockr Libraries User Guide

CoreTEE™ SecEdge’s Trusted Execution Environment (TEE), or secure OS,
enabled by ARM’s TrustZone™ architecture.

EmPOWERTM SaaS solution that provides cloud services to secure,
provision, update and manage intelligent edge devices.

Key Store Non-volatile storage of keys in encrypted form. Keys within a
key store are addressed by name.

Manifest
(SLIP)

Encrypted component containing customer personalization
data such as keys and certificates. They are installed on
device along with the device firmware.

OOID Opaque Object Identifier, which contains the OOInfo structure
encrypted specifically for a target device.

OOInfo Opaque Object Information structure.
Rich OS Rich execution environment such as Linux, which runs outside

the TEE. The Rich OS is considered un-trusted as compared to
the TEE.

STP SecEdge Trusted Package. A package in a custom DER-
encoded format with contents authenticated using a
provisioned key.

TA Trusted Application. A TA runs inside the TEE and provides
security related functionality to Client Applications running in
the Rich OS or to other TAs running in the TEE.

TEE Trusted Execution Environment or secure OS, enabled by
ARM’s TrustZone™ architecture.

2.2. EmSPARK Suite Contents
The Suite includes assets for the Rich OS and the Trusted Execution Environment, TEE:
+ APIs and Rich OS Assets

▪ CoreLockr APIs (C libraries)
▪ OpenSSL Crypto Engine
▪ Applications and code examples
▪ Linux patches (TEE driver and service provider daemon) to enable CoreTEE

functionality
▪ Toolchain and Client API

+ CoreTEE, Secure OS required to access TrustZone secured resources
+ Trusted Applications (TAs) in the TEE coupled with the CoreLockr APIs in the Rich OS

▪ Crypto Engine TA
▪ Secure Certificates TA
▪ Secure Storage TA

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 7

 EmSPARK Suite: CoreLockr Libraries User Guide

▪ TLS IO TA
The Suite components are illustrated in Figure 1 EmSPARK Architecture. The figure depicts a
logical view of the two worlds on the device, with CoreTEE in the TrustZone and the non-
secure Rich OS. Applications using the CoreLockr APIs in the Rich OS request to execute
security functions in the TrustZone. CoreTEE receives and processes the requests. The
security functions are executed in the TrustZone and the result passed back to the
applications in the Rich OS.

Figure 1 EmSPARK Architecture

2.3. CoreLockr APIs
The suite includes the following libraries:

+ CoreLockr Crypto API, cryptographic functions and key management in the TEE
+ CoreLockr Crypto OpenSSL Engine API, TEE based crypto engine via OpenSSL
+ CoreLockr Payload Verification and Key Utilities API, verification of data from a trusted

source and general key utility functions
+ CoreLockr TLS IO API, interface of a TLS client running in the TEE with access to keys and

certificates in the TEE
+ CoreLockr Secure Certificates API, management of trusted authorities in the TEE, rotation

of selected provisioned keys and certificates
+ CoreLockr Secure Storage API, protection of data at rest

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 8

 EmSPARK Suite: CoreLockr Libraries User Guide

2.4. Preinstalled Keys and Certificates in the TEE

During device provisioning, keys and certificates configured in the firmware image are stored
in the device non-volatile memory, in manifests. In a production environment, the OEM would
configure the keys and certificates. The Evaluation Kit firmware image has preconfigured such
keys and certificates. The associated private keys are supplied with the Kit to execute the
examples.

Installing on devices the Evaluation Kit firmware provisions keys and certificates that support
EmSPARK and EmPOWER services. For EmSPARK, the keys and certificates illustrate how a
customer such as an OEM can access and manage them through applications developed
using the CoreLockr APIs. Customer designs the usage scenarios. For EmPOWER, the keys and
certificates illustrate how they are used in cloud services. Table 1 and Table 2 list the
provisioned keys and certificates stored in non-volatile memory and managed in the TEE.

Table 1 – Provisioned Keys and Certificates for OEM Usage Scenarios

Cert/Key Name of cert/key exposed by
Security suite

Description

OEM Root Cert CLRSC_OEM_ROOT_CERT Cert containing the OEM Public Key,
customer decides usage.
In the Evaluation Kit, it is predefined
and the associated OEM Root private
key is provided as a file for execution
of example applications that verify
the OEM signature.

OEM Public Key CLRC_OEM_PUBLIC_KEY Public Key extracted from the OEM
cert.
Used for OEM signature verification,
customer decides usage scenarios
including authentication and integrity
checking of Opaque Keys and
Opaque Objects.

OEM Device
Private Key

CLRC_OEM_DEVICE_PRIVATE_KEY Device private key created in device
TEE during provisioning. Unique per
device. Immutable. Customer
decides usage scenarios including
decryption of payloads encrypted for
the specific device and for TLS
connection establishment.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 9

 EmSPARK Suite: CoreLockr Libraries User Guide

Cert/Key Name of cert/key exposed by
Security suite

Description

OEM Device
Public Key

CLRC_OEM_DEVICE_PUBLIC_KEY The pair of the OEM Device Private
key. Customer decides usage
scenarios including generation of
encrypted payloads such as Opaque
Keys and Opaque Objects tailored to
the specific device.

OEM Device
Cert

CLRSC_OEM_DEVICE_CERT Cert that can be used for TLS mutual
authentication. Customer decides
additional usage scenarios.

OEM Cloud IoT
Root CA

CLRSC_OEM_CLOUD_CERT Root CA of the Cloud IoT. Customer
decides usage scenarios such as TLS
mutual authentication.

OEM Cloud IoT
Public Key

CLRC_OEM_CLOUD_PUBLIC_KEY Public key extracted from Cloud IoT
Root CA.

OEM Payload
Cert

CLRSC_OEM_PAYLOAD_CERT Cert containing the OEM Payload
Public Key.

OEM Payload
Public Key

CLRC_OEM_PAYLOAD_PUBLIC_KEY Key used to authenticate update
payloads such as firmware update
payloads.

OEM
Command
Cert

CLRSC_OEM_COMMAND_CERT Cert containing the OEM Command
Public Key.

OEM
Command
Public Key

CLRC_OEM_COMMAND_PUBLIC_KEY Key used to authenticate commands
that change trust on the device, such
as commands modifying the
Certificate Store or updating the
provisioned certificates.

Table 2 – Provisioned Keys and Certificates for Use with EmPOWER Sevices

Cert/Key Name of cert/key exposed by
Security suite

Description

EmPOWER
Root Cert

CLRSC_EMPOWER_ROOT_CERT Certificate used for EmPOWER
cloud connectivity.

EmPOWER
Public Key

CLRC_EMPOWER_PUBLIC_KEY Public key contained in EmPOWER
Root Certificate.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 10

 EmSPARK Suite: CoreLockr Libraries User Guide

Cert/Key Name of cert/key exposed by
Security suite

Description

EmPOWER
Device
Private Key

CLRC_EMPOWER_DEVICE_PRIVATE_KEY Device private key created in
device TEE during provisioning.
Unique per device. Immutable.
Used to identify the device with
EmPOWER cloud services.

EmPOWER
Device
Public Key

CLRC_EMPOWER_DEVICE_PUBLIC_KEY The pair of the EmPOWER Device
Private key.

EmPOWER
Device Cert

CLRSC_EMPOWER_DEVICE_CERT Cert used for TLS authentication
with EmPOWER service.

EmPOWER
Cloud Cert

CLRSC_EMPOWER_CLOUD_CERT Used for TLS mutual authentication
with EmPOWER cloud services

EmPOWER
Cloud Public
Key

CLRC_EMPOWER_CLOUD_PUBLIC_KEY Public key extracted from
EmPOWER Cloud Cert.

Applications in the Rich OS using the CoreLockr APIs access these keys and certificates by
names defined in header files of the Crypto API and Secure Certificates API. Please see 3.3
Access to Provisioned Keys and 9.1 Provisioned Certificates.

In the Evaluation Kit, with exception of the OEM Device Key, OEM Device Certificate, EmPOWER
Device Key and EmPOWER Device Certificate which are unique per device, all other keys are
the same in all kits and are not meant to protect secrets but to be used with the examples or
for testing.

3. CORELOCKR CRYPTO API
The CoreLockr Cryptographic API and Crypto Engine TA allow easy access to cryptographic
functions in the TEE and provides mechanisms to protect confidential information on a device.
This section is an overview of the API functionality and example applications. For description of
the API, please see CoreLockr_Cryptographic_API.pdf.

The API functionality includes:

+ Key management, ephemeral keys and persistent keys managed in the TEE
+ Key Store, device specific encrypted key storage
+ Access to provisioned keys, access of provisioned credentials protected in the TEE

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 11

 EmSPARK Suite: CoreLockr Libraries User Guide

+ Cryptographic operations, cryptographic operations executed in the TEE
+ Tools to generate and use Opaque Keys, mechanism to transport keys to a device while

protecting their confidentiality and integrity and store them in the device Key Store
+ Tools to generate and use Opaque Objects, off-device encrypted objects for decryption on-

device only when the decryption is enabled with device specific keys

In the Kit, corelockr/corelockr_crypto contains:

+ lib, libseqr_corelockr_crypto.so library
+ include, header files
+ ta, 138A1951-2A00-BF5A-A463E61F402EBE1D.stp associated TA
+ Documentation, CoreLockr_Cryptographic_API.pdf describes the API
+ README.txt, general API information
+ COPYRIGHT, copyright notice
+ Example applications

Section 3.8 Examples describes the example applications. See Appendix A: Supported
Cryptographic Operations for list of supported operations.

In the Kit, corelockr/corelockr_opaque_keys contains a script used for creating Opaque Key
packages. Please see the 4 CoreLockr Crypto API – Opaque Keys section.

In the Kit, corelockr/corelockr_opaque_objects contains scripts used for creating Opaque
Objects. Please see the 5 CoreLockr Crypto API – Opaque Objects section.

3.1. Key Management
Supported key types include AES, RSA, ECDSA, ECDH, DH, DSA and HMAC. The API supports
ephemeral keys and persistent keys managed throughout the device life cycle. Ephemeral
keys exist in memory within the loaded TA instance. An ephemeral key disappears when the
TA is closed. Persistent keys are stored in the Key Store, a non-volatile storage of keys in
encrypted form. Applications in the Rich OS reference keys in the TEE via key handles.

Capabilities of the CoreLockr Crypto engine to import and use keys in the TEE, and execution
of operations with provisioned keys are illustrated with an example application and code
sample.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 12

 EmSPARK Suite: CoreLockr Libraries User Guide

3.2. Key Store

The Key Store is a non-volatile storage of keys in encrypted form. Each persistent key is
stored with a name used to access and manage the key. Keys can be created in the TEE or
imported to the TEE. Keys can be stored in the Key Store using Opaque Key mechanisms. The
visibility the Rich OS has of the key private attributes is set at the time of key creation or
importing.

Keys within the Key Store may be password protected. The same as keys, password objects
are stored in the Key Store and have names. Loading a password object from the Key Store
generates a handle.

3.3. Access to Provisioned Keys
The API allows access to provisioned keys such as the keys listed in Table 1 and Table 2.
Provisioned keys are accessed as named keys, the same as keys in the Key Store with no
password. The key names are defined in the corelockr_crypto.h header file.

~/corelockr_crypto/include/corelockr_crypto.h

#define CLRC_OEM_PUBLIC_KEY "com.seqlabs.oem_pub_key"

#define CLRC_OEM_CLOUD_PUBLIC_KEY "com.seqlabs.oem_cloud_pub_key"

#define CLRC_OEM_PAYLOAD_PUBLIC_KEY "com.seqlabs.oem_payload_pub_key"

#define CLRC_OEM_COMMAND_PUBLIC_KEY "com.seqlabs.oem_command_pub_key"

#define CLRC_OEM_DEVICE_PUBLIC_KEY "com.seqlabs.oem_device_pub_key"

#define CLRC_OEM_DEVICE_PRIVATE_KEY "com.seqlabs.oem_device_key"

#define CLRC_EMPOWER_PUBLIC_KEY "com.seqlabs.emp_pub_key"

#define CLRC_EMPOWER_CLOUD_PUBLIC_KEY "com.seqlabs.emp_cloud_pub_key"

#define CLRC_EMPOWER_DEVICE_PUBLIC_KEY "com.seqlabs.emp_device_pub_key"

#define CLRC_EMPOWER_DEVICE_PRIVATE_KEY "com.seqlabs.emp_device_key"

The API function to load a provisioned key returns a key handle. In the case of the OEM
Device Private Key, com.seqlabs.oem_device_key, and EmPOWER Device Private Key,
com.seqlabs.emp_device_pub_key, which are generated during provisioning, applications
running in the Rich OS have no visibility of the keys’ private attributes. To use these private
keys, applications reference them via handles.

3.4. Cryptographic operations
Cryptographic operations are executed in the TEE. Applications in the Rich OS reference
operations via handles. For complete information about the supported API functions, please
see CoreLockr_Cryptographic_API.pdf. Operations include:

▪ Symmetric encrypt/decrypt
▪ Asymmetric encrypt/decrypt

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 13

 EmSPARK Suite: CoreLockr Libraries User Guide

▪ Generate message authentication codes
▪ Sign and verify signatures
▪ Derive shared keys
▪ Generate cryptographic hashes
▪ Random number generation

3.5. Opaque Keys
This is a mechanism to transport keys in signed and encrypted opaque key packages.
Device specific keys are used to encrypt opaque key packages. The Suite provides tools to
produce Opaque Key packages containing keys generated in environments outside the
device, and tools to import and store the keys in the TEE while preventing the Rich OS from
accessing the contents of such keys. Section 4 CoreLockr Crypto API – Opaque Keys
explains concepts, creation and usage.

3.6. Opaque Objects
Opaque Objects protect applications and IP at rest. Opaque Objects facilitate transferring
and storing encrypted payloads and enable their access for a specific device. There are two
sides to the code: the server side where the Opaque Object is encrypted and its device-
specific identifier is created, and the device side where the object is decrypted. Section 5
CoreLockr Crypto API – Opaque Objects explains concepts, creation and usage.

3.7. Opaque Keys and Opaque Objects Usage
From the usage schema, the following are differences between Opaque Keys and Opaque
Objects:

+ Opaque Keys are saved to the persistent Key Store and can be managed and used as
any other key in the Key Store.

+ Opaque Objects are encrypted and can be copied to any device. However, to decrypt
them, an Opaque Object Identifier generated for a specific device is required.

+ Opaque Object Identifiers produce transient keys that are only used to decrypt the
Opaque Object.

3.8. Examples

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 14

 EmSPARK Suite: CoreLockr Libraries User Guide

This section describes the key management and Key Store examples. Please see 4
CoreLockr Crypto API – Opaque Keys and 5 CoreLockr Crypto API – Opaque Objects for
additional examples.

3.8.1. Key Management and Provisioned Key Access Example
The application uses the CoreLockr Crypto API to execute the following functions:

+ Compute a random number
+ Import and use keys in the TEE
+ Compute an HMAC
+ Encrypt and decrypt data using the AES-128-CBC algorithm
+ Sign and verify data using ECC keys
+ Execute operations with a key preinstalled in the TEE

Software and Data Requirements

• CoreLockr Crypto example application, corelockr/corelockr_crypto/example
• Supplied EC private key file, seq_oem_ca_key.der
• Provisioned EC public key available in the TEE, com.seqlabs.oem_pub_key

The private key associated with the OEM Root Certificate is required for signing payloads
that will be verified in the TEE with the OEM Public Key. The example provides
seq_oem_ca_key.der associated with the OEM Root Certificate com.seqlabs.oem_pub_key
preinstalled in the TEE. This private key file usually not found on the device is provided to
make easy the example execution.

Building and Installing

In Linux development environment, change to the corelockr/corelockr_crypto/example
directory and execute make. The compilation creates the clrc_demo executable. Transfer
clrc_demo and seq_oem_ca_key.der to the board to a directory of your preference.

Flow and Code Walkthrough

See corelockr/corelockr_crypto/example/README.txt.

Executing the Example

Application options:
-k [SSL ECC private key file] (required)
-p [Preloaded ECC public key name] (optional). If omitted, the private key file is used for
verification.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 15

 EmSPARK Suite: CoreLockr Libraries User Guide

Change to the directory where the clrc_demo application and seq_oem_ca_key.der were
transferred.
To sign with the ECC private key file and verify with the ECC public key saved in the TEE,
execute:

./clrc_demo –k seq_oem_ca_key.der –p com.seqlabs.oem_pub_key

where com.seqlabs.oem_pub_key is the name of the OEM Public Key saved in the TEE, as
explained in 3.3 Access to Provisioned Keys.

3.8.2. Key Store Example
This example illustrates functionality of the Key Store. Using the Crypto API, the application
creates a key in the TEE and saves it in the Key Store as a named key and with a password.
Then, the application loads the key from the Key Store and uses it for crypto operations.
Application functionality:

+ Create an ECDSA key: ECC P256
+ Use the created key to sign an input string
+ Save the key in the Key Store

▪ Set the password object in the Key Store
▪ Save the named key in the Key Store with the associated password object

+ Load the named key from the Key Store providing a password
+ Use the named key to verify the signature
+ Clean up

▪ Delete the named key
▪ Delete the password object from the store

Note that key names are unique in the Key Store. The example deletes the named key and
password object to avoid CLRC_ERROR_EXISTS in subsequent application executions.

Software and Data Requirements

CoreLockr Crypto example application,
corelockr/corelockr_crypto/example_key_store_with_password

Building and Installing

In Linux development environment, change to
corelockr/corelockr_crypto/example_key_store_with_password and execute make.
The compilation creates the clrc_key_store_password executable. Transfer the
executable file to the board in a directory of your choosing.

Flow and Code Walkthrough

See corelockr/corelockr_crypto/example_key_store_with_password/README.txt.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 16

 EmSPARK Suite: CoreLockr Libraries User Guide

Executing the Example

Change to the directory where the clrc_key_store_password application was transferred
and execute it:

./clrc_key_store_password

The application prints messages for different functions and computation results, including:

Creating ECDSA key

Printing out ECDSA key attributes

Signing with the created key

Creating password object "ecc-256-pw" in the store

Saving key in the key store

 Saved named key "ecc-256-key" in the key store,

 with associated password object "ecc-256-pw"

ECDSA verifying using key loaded from the key store

Deleting "ecc-256-key" from the key store

Deleting password object "ecc-256-pw" from the store

4. CORELOCKR CRYPTO API – OPAQUE KEYS
When keys generated outside the device need to be transferred to the device protecting their
confidentiality and integrity, Opaque Keys are the solution. On a device-specific basis, Opaque
Keys are made available to the TEE without allowing the Rich OS to see the key contents.
Opaque Keys facilitate scenarios such as sending license keys to the device for feature
enablement, symmetric keys used for confidential data transfer between devices, and
asymmetric key pairs for associated certificates.

The EmSPARK suite provides tools to generate packages containing such keys in environments
outside the device, and tools to import and store the keys in the TEE while preventing the Rich
OS from accessing the contents of the Opaque Keys.

Kit contents

+ The CoreLockr Crypto API documentation lists the supported Opaque Key types and
algorithms and describes the clrcSaveOpaqueKeyEx() function that verifies the signature
of an encrypted key package, decrypts and saves the packaged key into the Key Store,
CoreLockr_Cryptographic_API.pdf

In addition, the Suite includes in corelockr/corelockr_opaque_keys:

+ A reference implementation script to create Opaque Key packages, code documentation
and usage help, make_opaque_key_package.sh.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 17

 EmSPARK Suite: CoreLockr Libraries User Guide

+ Documentation describing the Opaque Key package structure and approach for encryption
and MAC operations for those who wish to create packages with their own software, see
opaque_key_package_format.txt.

+ Instructions and sample key to execute example.

4.1. Creating and Storing Opaque Keys
Opaque Key packages are created in environments outside the device, such as servers.
When transferred to the device, the Opaque Key package can be verified, decrypted and
unpacked directly to the CoreLockr Key Store using the CoreLockr Crypto API. In this section,
Figure 2 depicts a high-level flow of the Opaque Key creation on a server and storage on the
device. The next subsections describe how to create an Opaque Package and how to store
the key contained in the Opaque Package into the Key Store on the device.

Figure 2 Opaque Keys

4.1.1. Creating Opaque Key Packages
The corelockr/corelockr_opaque_keys/make_opaque_key_package.sh script is used to
create Opaque Key packages, as follows:
+ The script packages a key into an opaque bundle. The key is either an asymmetric key in

DER format, or a symmetric key in raw binary format.
+ The key is combined with additional key information (key type, key name in the persistent

storage and key data) into a DER-encoded SEQUENCE
+ The DER-encoded SEQUENCE is encrypted and has its MAC tag computed (in

accordance with the ECIES standard).
+ The keys for the encryption and MAC are computed from a device specific ECC public

key, an ephemeral key pair, and a random number.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 18

 EmSPARK Suite: CoreLockr Libraries User Guide

+ The encrypted payload, MAC tag, public component of the ephemeral key pair, random
number, and algorithm IDs are all DER-encoded and concatenated.

+ That data is signed, and the signature is prepended to the data within a wrapping
SEQUENCE.

The script may be used on a server where the required utility programs are available. The
script takes the following inputs:
a. Packaged key, the key to be transferred to the device

▪ Name that will be used to store the packaged key in the device Key Store
▪ Key type
▪ Path of the key file

b. OEM private key for signing the Opaque Key package, the signature will be verified on the
device using the provisioned OEM Public Key
▪ Path of the key file

c. ECDH shared secret derivation key which will be used for decryption on the device, it shall
be device specific such as the OEM Device Public Key file or another ECC public key file
already stored in the device Key Store
▪ Path of the key file

d. Name of the cipher algorithm
e. Name of the MAC algorithm
f. Path to the output Opaque Key package file
The script has complete information of input values.

4.1.2. Saving Opaque Key on Device Key Store
On the device, the CoreLockr Crypto API clrcSaveOpaqueKeyEx() function verifies the
signature of an encrypted key package, decrypts and loads the key contained in the
package, and saves the key into the Key Store under the key name provided when creating
the Opaque Key package.

ClrcResult clrcSaveOpaqueKeyEx(const uint8_t *keyPkg,

uint32_t keyPkgLength,

ClrcKeyHandle hDeviceKey,

ClrcPasswordHandle hPassword);

The key package shall be created using make_opaque_key_package.sh, or following the
same process as described in the shell script. For information about
clrcSaveOpaqueKeyEx(), please see CoreLockr_Cryptographic_API.pdf. After the key is
stored in the Key Store, applications can access the key in the same manner as any other
key managed in the TEE.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 19

 EmSPARK Suite: CoreLockr Libraries User Guide

4.2. Opaque Key Example

The example illustrates the sequence from creating an Opaque Key Package using
make_opaque_key_package.sh to storing the Opaque Key in the Key Store as a named key
with a password using the Key Utilities example. It also illustrates the use of the Device Public
Key extracted from the TEE as a file and used as the ECDH shared secret derivation key
during the Opaque Key package creation.

The following sequence includes operations executed off-device and on the device:

+ Create Opaque Key package using make_opaque_key_package.sh
+ Store Opaque Key in the TEE as a Named Key with a password using clrpv_key_utility
+ Print attributes of named key
The example uses the key utilities example provided with the CoreLockr Payload Verification
API. For building instructions see 6.2 Key Utilities.

a. Create Opaque Key package
Opaque Key packages are DER-encoded structures containing key information (key type,
key name in the persistent store, and key data). The key information is encrypted inside
the package, so no key information is accessible until decrypted. The MAC tag for the
encrypted information is also added to the package. The encrypted key information, MAC
tag, and the remaining information required for decryption are hashed and signed to
ensure the integrity and verify the source of the package.

▪ On the device, obtain the device specific key, e.g. Device Public Key. Using
clrpv_key_utility extract Device Public Key com.seqlabs.oem_device_pub_key to
a file

./clrpv_key_utility -E -n "com.seqlabs.oem_device_pub_key" -k

device_pub_key.der

▪ Transfer device_pub_key.der to the development environment to create the
Opaque Key package, ~/corelockr/corelockr_opaque_keys/

▪ The Opaque Key package creation uses the OEM key to sign the package. The sample
OEM key is provided with Crypto API example, located at
corelockr/corelockr_crypto/example/ seq_oem_ca_key.der.

▪ The provided ecdsa256.der is a sample private key file to be transferred to the
device

openssl ec -in ecdsa256.der -text -noout -inform DER

▪ Off-device, e.g. in the development environment, create the Opaque Key package
from the example key ecdsa256.der

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 20

 EmSPARK Suite: CoreLockr Libraries User Guide

./make_opaque_key_package.sh -n "opaque.ecdsa256.test1" \

-t KEY_ECDSA_KEYPAIR -K ecdsa256.der \

-S ../corelockr_crypto/example/seq_oem_ca_key.der \

-D device_pub_key.der -c AES_CTR -m HMAC_SHA256 \

-o opaque_key.dat

The -o output Opaque Key package is opaque_key.dat. The other switches represent:
-n name that the packaged key will have in the Key Store opaque.ecdsa256.test
-t type of the key to be packaged as defined in make_opaque_key_package.sh
-K path to the key file to be packaged
-S path of the key file used for signing, the OEM key
-D path to the device-specific ECC public key file, in this case the Device Public Key

b. Transfer the Opaque Key package to the device

▪ Copy opaque_key.dat to the directory where clrpv_key_utility is located.
c. On the device, store the Opaque Key in the Key Store as a named key and with a

password, using clrpv_key_utility
▪ Create a password object

./clrpv_key_utility -S -p "OKMyPW:myokpassword"

▪ Store the Opaque Key in opaque_key.dat with the password (the name of the key is
encoded in the file). The application uses clrcSaveOpaqueKeyEx() to store the
Opaque Key into the Key Store.

./clrpv_key_utility -O -k "opaque_key.dat" –p "OKMyPW:myokpassword"

▪ Print the public attributes of the stored key and confirm they are the same as in
ecdsa256.der

./clrpv_key_utility -P -n "opaque.ecdsa256.test1" -p

"OKMyPW:myokpassword"

▪ If desired to execute the example again, delete the password object and the stored
named key, as shown in Key Utilities Example.

5. CORELOCKR CRYPTO API – OPAQUE OBJECTS
Opaque Objects facilitate transferring and storing encrypted payloads that can only be
decrypted on a device-specific basis. Opaque Objects are the solution when objects generated
outside the device need to be transferred and executed on the device protecting their
confidentiality and integrity. Opaque Objects verification and decryption is only possible in the
TEE without allowing the Rich OS access to the required keys.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 21

 EmSPARK Suite: CoreLockr Libraries User Guide

Kit Contents

The CoreLockr Crypto API documentation describes the Opaque Object Decoding functions and
the supported algorithms, CoreLockr_Cryptographic_API.pdf.

In addition, the Suite includes in corelockr/corelockr_opaque_objects:

+ A reference implementation script to create an Opaque Object, make_opaque_object.sh.
+ A reference implementation script to generate the Opaque Object Identifier,

make_opaque_object_identifier.sh.
+ Documentation of the Opaque Object Identifier package format for those who wish to

create Identifiers with their own software,
opaque_object_identifier_package_format.txt.

+ Documentation of the cryptographic operations and keys, README.txt.
+ Example application.

5.1. Creating and Decrypting Opaque Objects
Opaque Objects consist of two components:

+ Opaque Object, the object itself is a data bundle encrypted using a standard AES-256
algorithm. It is created with an associated Opaque Object Information structure (OOInfo
structure).

+ Opaque Object Identifier (OOID), which contains the OOInfo structure encrypted
specifically for a target device. The OOID is required to access the decrypted contents of
the Opaque Object.

Because the Opaque Object is encrypted, it can be created on a server and installed on any
number of devices. The associated OOInfo structure contains the key for decrypting the
object, the type of cipher, the digest and size of the cleartext data bundle, and various
optional usage policies.

The OOInfo structure is itself encrypted into a separate package called the Opaque Object
Identifier (OOID). To give a particular device access to the decrypted contents of the
Opaque Object, the OOID is created on the server, encrypted for a specific device and then
transferred to the device. The encryption of the OOInfo inside the OOID uses a separate key
from that used to encrypt the Opaque Object. On the device, the OOID is used with the
Opaque Object to obtain the decrypted data from the latter.

Encrypted specifically for a target device, the OOID cannot be decrypted on another device.
The key to decrypt the OOID is specified during its creation. The OOID is encrypted using

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 22

 EmSPARK Suite: CoreLockr Libraries User Guide

Integrated Encryption and a public key from the device. When decrypted, the OOID is used to
decrypt the Opaque Object.

Figure 3 depicts a high-level flow of the Opaque Object creation on a server and decryption
on the device:

+ On a server, the Opaque Object and the Opaque Object Information Structure (OOInfo)
are generated. The Opaque Object may be transferred to a device.

+ On the server, the Opaque Object Identifier is generated taking as inputs the Opaque
Object Information Structure, the signing key and the device specific key.
▪ The signing key can be the OEM private key whose signature is verified on the device

using the provisioned OEM Public Key. Alternatively, the signing key can be another key
whose public component is available in the device Key Store to verify the signature.
Such key may be ECDSA, RSA or DSA.

▪ The device specific key can be the OEM Device Public Key file or another ECC public
key file already stored in the device Key Store.

+ On the target device where the device specific key is in the TEE, the Crypto API function
will require the Opaque Object and the Opaque Object Identifier in order to decrypt the
object. For detail on the cryptographic operations to create Opaque Objects and OOID,
keys, OOInfo structure and OOID format, please see
opaque_object_identifier_package_format.txt and README.txt.

Figure 3 Opaque Objects

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 23

 EmSPARK Suite: CoreLockr Libraries User Guide

5.2. Opaque Object Example

The example creates an Opaque Object of a file (README.txt) and then the associated OOID.
The client application on the device takes these two inputs. The client application simply
decrypts the file contained in the Opaque Object. To illustrate the functionality, the example
uses the following scripts and client application described also in the README.txt file
provided with the example:

+ Create an Opaque Object, the example uses the make_opaque_object.sh script
+ Create a device-specific identifier for the Opaque Object,

make_opaque_object_identifier.sh script
+ Then the example uses the client application to decrypt the Opaque Object on the

device.

This section provides requirements, building instructions and additional references. The
example requires a sequence of steps starting in Linux development environment, then on
the device, again in Linux environment and finally on the device.

Software and Data Requirements

+ CoreLockr Opaque Objects example application, README.txt and scripts,
corelockr/corelockr_opaque_objects

+ Payload Verification example application,
corelockr/corelockr_payload_verification/example

+ Sample OEM private key, corelockr/corelockr_crypto/example/seq_oem_ca_key.der
+ Provisioned Device Public Key, extracted from the TEE on the device

Building
In addition to create the Opaque Objects, this example requires the Payload Verification Key
Utilities example application, described below. In Linux development environment:

a. Build the Payload Verification Key Utilities example application in this directory according
to the instructions in 6.2 Key Utilities and transfer the clrpv_key_utility executable to
the board

 corelockr/corelockr_payload_verification/example_key_utility/

b. The example execution will instruct how to build the application and to create the
Opaque Object and Opaque Object Identifier

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 24

 EmSPARK Suite: CoreLockr Libraries User Guide

 corelockr/corelockr_opaque_objects/make_opaque_object_identifier.sh

5.2.1. Executing the Example
Execute the following steps on the device in Linux to extract from the TEE the device public
key:

a. Change to the directory where the clrpv_key_utility application was transferred.
b. Execute the following command to extract the OEM Device Public Key:

./clrpv_key_utility -E -n "com.seqlabs.oem_device_pub_key" -k dev-pub.der

Transfer the extracted key to the Linux development environment and place it in this
example directory

~/corelockr/clrc_opaque_objects/example/

Execute the following steps in Linux development environment within the example directory
to build the example application, create the Opaque Object and then generate the OOID.

c. Change to:

~/corelockr/clrc_opaque_objects/example/

d. Run “make” to build the clrc_opaque_objects_demo application.
e. Execute the script to create the Opaque Object from the example/README.txt file:

 ../make_opaque_object.sh -i README.txt

A random AES-256 key will be generated, and the default cipher algorithm AES_CTR will
be used for encrypting the Opaque Object. Two outputs are generated:

• The Opaque Object, README.txt.enc
• A configuration file with information necessary for creating the identifier,

README.txt.oocfg

Run ../make_opaque_object.sh -h to view more information about the script.

f. In this example, the creation of the Opaque Object identifier uses the OEM Device Public
Key to encrypt the AES key generated in step e., and the OEM signing key to sign the
identifier. The device public key is acquired as in step b. above. The OEM signing key for
the evaluation package is located at:

corelockr/corelockr_crypto/example/seq_oem_ca_key.der.

Execute the following command to create the Opaque Object identifier (OOID):

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 25

 EmSPARK Suite: CoreLockr Libraries User Guide

../make_opaque_object_identifier.sh -i README.txt.oocfg \

-S ../../corelockr_crypto/example/seq_oem_ca_key.der \

-D dev-pub.der

The identifier will be written to the file README.txt.ooid. The default cipher AES_CTR and
digest HMAC_SHA256 algorithms will be used for that.

Executing the script with the -h option shows help information, the available options and the
full lists of cipher and HMAC algorithms which can be used to create the identifiers.

g. Transfer the clrc_opaque_objects_demo application and README.txt.enc and
README.txt.ooid files to the device. Transfer also the original README.txt, which in this
example is compared the decrypted file to illustrate they are identical.

Execute the following steps on the board in Linux.

h. Change to the directory where the clrc_opaque_objects_demo application and
README.txt* files were transferred to.

i. Execute the following command to decrypt the Opaque Object:

 ./clrc_opaque_objects_demo -k README.txt.ooid -i README.txt.enc \

-o README.txt.dec

 README.txt.dec contains the decrypted output of the Opaque Object.

j. Execute the following command to compare the decrypted output with the original file:

 cmp README.txt README.txt.dec

If the files are identical as expected, no output will be generated by the cmp command.

6. CORELOCKR PAYLOAD VERIFICATION AND KEY UTILITIES API
This API has payload verification functions and key utility functions. It is often necessary to know
that data accessed on a remote device is from a trusted source and has not been tampered
with. This is usually accomplished by signing the data with a private key at the source, and then
verifying it with the corresponding public key on the device. The CoreLockr Payload Verification
system does exactly that, with the added security of keeping the public key within a persistent
store that prohibits tampering.

The key utilities are not strictly necessary for creating and verifying signed payload packages.
However, they can be useful for testing and provisioning keys on devices. There are utilities for

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 26

 EmSPARK Suite: CoreLockr Libraries User Guide

printing out the contents of loaded keys (useful for debugging) and utilities to save keys loaded
in the TEE to a memory buffer or a file, useful for public keys.

The API functionality includes:

+ Payload Verification
▪ Creation of signed payload packages
▪ Verification and decoding of signed payload packages

+ General key utility functions
▪ Importing and exporting asymmetric key DER encoded files into the CoreLockr Crypto

system
▪ Functions for converting between DER-encoded and CoreLockr Crypto format signatures

and public keys
▪ Printing out the contents of loaded keys for debugging

In the Kit, corelockr/corelockr_payload_verification contains:

+ lib, two versions of the library are available: libclrpv.a for building applications for the
board, and libclrpv_x86_64.a for building applications for Linux x86_64 systems (for
creating packages)

+ include, header files
+ docs, library documentation
+ bin, a shell script that uses OpenSSL for creating payload packages in case the API library is

unavailable in the system
+ payload_package_format.txt, description of the encoded package format for those who

wish to create package files with their own software

+ README.txt, general API information
+ COPYRIGHT, copyright notice
+ example, application with source code
+ example_key_utility, application with source code

Sections 6.1 Payload Verification Example and 6.2 Key Utilities Example describe the example
applications.

6.1. Payload Verification Example
The API facilitates creation of signed payload packages and verification and decoding of
signed payload packages. Packages created at the source contain the payload data,
signature and hash identifier, all encoded together in DER format.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 27

 EmSPARK Suite: CoreLockr Libraries User Guide

6.1.1. Background
The example application illustrates the ability of the EmSPARK Suite to verify data using a key
preinstalled in the TEE. The application uses the CoreLockr Payload Verification API which
provides functions for creating and verifying signed payload packages. The API supports
ECC, RSA, DSA and DH keys and multiple hashing algorithms. The Example Application
Execution has two phases:

+ Creation of a signed payload package
▪ Creation of payload in a system external to the board. The Kit provides a shell

script that uses OpenSSL for creating payload packages,
corelockr_payload_verification/bin/make_payload_package.sh. The script
signs the digest of a payload file and DER encodes it.

▪ Creation of payload on the board. To simplify the example set up and avoid the
configuration of an external system for creating signed packages, the application
that executes on the board can be used for both creating a signed package and
then for verifying it. The application creates a signed payload package using the
OpenSSL crypto library.

+ Verification of a signed payload package
▪ Using the underlying CoreLockr Crypto, the example application executing on the

board verifies the signed packages

For simplicity, the example code requires the use of ECC keys and forces the use of the SHA1
hash. The application permits the execution of the following scenarios:

+ Successful verification of a payload package signed with an authorized key
+ Failed verification of a payload package signed with an unauthorized key
+ Encoding of a package (optional)

Software and Data Requirements

+ Payload Verification example application,
corelockr/corelockr_payload_verification/example

+ OEM Payload Private Key associated with the OEM Payload Certificate flashed on the
device, used for signing the payload packages. The example provides
seq_payload_ca.key in PEM format and seq_payload_ca_key.der in DER format (ECC
P256) which are associated with OEM Payload Public Key provisioned on the device to
verify payloads, see Table 1 – Provisioned Keys and Certificates for OEM Usage Scenarios

+ OEM Payload Public Key to verify signed packages. This key is already saved in the TEE
and can be accessed by name: com.seqlabs.oem_payload_pub_key

+ Script to create payload packages,
corelockr_payload_verification/bin/make_payload_package.sh

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 28

 EmSPARK Suite: CoreLockr Libraries User Guide

+ Payload files, which need to be available on the board before executing the application

Building and Installing

Change to the corelockr/corelockr_payload_verification/example directory. Execute
make to build clrpv_demo. Transfer the executable along with payload sample file to the
board.

6.1.2. Executing the Example
On the device, change to the directory where clrpv_demo is located to execute the
application commands in the Linux command line.

Create a Signed Payload Package in a System External to the Board

To create a signed package in an external system using the make_payload_package.sh
script in corelockr_payload_verification/bin, identify:

+ Path of the private key used for signing, in PEM format. In this example, the provided
seq_payload_ca.key in PEM format is associated with the OEM Payload Certificate

+ Path of the payload file, test-payload is provided with the example application
+ Path and name to the output package file
+ Hashing algorithm, md5, sha1, sha224, sha256, sha384, sha512

Execute the script in the system where the payload file will be generated, e.g.

./make_payload_package.sh -k seq_payload_ca.key -d sha1 -p test-payload -o

signed-on-server-payload

where –k precedes the key file name, -d the hashing algorithm, -p the name of the payload
to be signed and –o the name of the signed payload, which in the example is signed-on-
server-payload. Transfer the signed packages to the board.

Create a Signed Package on the Board

To simplify the Example Application Execution, the application on the board can create a
signed payload package using the OpenSSL crypto library. The creation of a signed package
requires:

+ Path of the private key, in PEM or DER format, used for signing
+ Path of the payload file
+ Path to the output package file
+ Hashing algorithm, the example application uses SHA1

To create a package, make sure you have a sample payload file (test-payload is
provided) to be signed, and execute:

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 29

 EmSPARK Suite: CoreLockr Libraries User Guide

./clrpv_demo –E –p test-payload –k seq_payload_ca.key –s encoded-pkg

where “-E” indicates the application option to encode the payload file name test-payload
(this can be replaced by another existing payload file name), “-k” is the private key
seq_payload_ca_key.der, and “-s” precedes the signed payload package file name to be
created, encoded-pkg.

If the encoding is successful, the output below is printed and encoded-pkg is created:

Package creation returned 0 (0x00000000)

Verify a Package, Successful Verification Scenarios

The Payload Verification API has functions for decoding a signed package, extracting the
payload and writing an output file. For package verification the Payload Verification API
requires:

+ Signed package path
+ DER format key

The example application can verify packages using either a public key preinstalled in the TEE
or a key file in DER format. To verify packages using the preloaded key in the TEE execute:

./clrpv_demo –V –k com.seqlabs.oem_payload_pub_key –s signed-on-server-

payload –p new-payload

./clrpv_demo –V –k com.seqlabs.oem_payload_pub_key –s encoded-pkg –p new-

payload2

where “-V” tells the application to verify the encoded package signed-on-server-payload
or encoded-pkg and “-p” to extract the payload in a new payload file new-payload or new-
payload2. “-k” precedes com.seqlabs.oem_payload_pub_key, the name of the OEM
Payload Public Key managed in the TEE.

In this case the verification succeeds because both packages were signed with the private
key corresponding to the public DER key saved in the TEE and used for verification (and the
packages have not been tampered with). The following output is printed on the console and
new-payload file is created:

Verification returned 0 (0x00000000)

The standard command-line tool “diff” can be used to test that the extracted new-
payload and new-payload2 files are identical to the original test-payload file.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 30

 EmSPARK Suite: CoreLockr Libraries User Guide

Verify a Package, Verification Failure Scenarios

When there is a mismatch between the signed package and the key used for signing, the
verification fails and the corresponding error is printed on the console. For example,
attempts to verify a package whose signature or contents have been altered return errors.
For description of the encoded package format see payload_package_format.txt.

Note that error codes can be returned from the Payload Verification API, from the underlying
CoreLockr Crypto API calls, as well as the usual errno return codes from system calls. See
the API documentation for list of return codes.

6.2. Key Utilities Example
Key utilities include functions for converting between DER-encoded and CoreLockr Crypto
format keys and signatures.

6.2.1. Background
The example application uses the CoreLockr Payload Verification API and the CoreLockr
Crypto API to illustrate a variety of scenarios, including the following for key store and
Opaque Keys:

+ Store a password object with password
+ Store a private key associated with the stored password
+ Print the attributes of the stored key
+ Extract the components of the stored key
+ List the name of the password required by the stored key
+ List the names of the keys using the stored password
+ Delete the stored key
+ Delete the stored password object
+ Extract from the TEE the public key of a provisioned key such as the OEM Device Public Key
+ Store an Opaque Key in an Opaque Key package with a password

Note: the scenario that stores an Opaque Key to the key store requires that an Opaque Key
package be created and transferred to the device. Please see the 4 CoreLockr Crypto API –
Opaque Keys section.

Software and Data Requirements

~/corelockr/corelockr_payload_verification/example_key_utility example source
files and sample key

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 31

 EmSPARK Suite: CoreLockr Libraries User Guide

Building and Installing

Change to the ~/corelockr_payload_verification/example_key_utility directory.
Execute make to build clrpv_key_utility. Transfer the executable along with payload
sample files to the board.

6.2.2. Executing the Example
On the board, change to the directory where clrpv_key_utility and sample key are
located to execute the application commands in the Linux command line.

The application README.txt and the binary provide information of the switches and input
data required for its execution.

Key Utilities Example

Store a password object named “MyPW” with password “mypassword”

./clrpv_key_utility –S –p "MyPW:mypassword"

Store a DER-encoded ECDSA private key in the file “ecdsa.der” under the name “MyEcdsaKey”
and using the stored password

./clrpv_key_utility –S –n "MyEcdsaKey" –t KEY_ECDSA_KEYPAIR –k ecdsa.der –p

"MyPW:mypassword"

Print the public attributes of the stored key

./clrpv_key_utility –P –n "MyEcdsaKey" –p "MyPW:mypassword"

Extract the public components of the stored key

./clrpv_key_utility –E –n "MyEcdsaKey" –p "MyPW:mypassword" –k ecdsa-pub.der

List the name of the password required by the stored key

./clrpv_key_utility –L –n "MyEcdsaKey"

List the names of the keys using the stored password

./clrpv_key_utility –L –p "MyPW:mypassword"

Delete the stored key

./clrpv_key_utility –D –n "MyEcdsaKey" –p "MyPW:mypassword"

Delete the stored password object

./clrpv_key_utility –D –p "MyPW:mypassword"

Extract from the TEE the public key of a provisioned key such as the OEM Device Public Key

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 32

 EmSPARK Suite: CoreLockr Libraries User Guide

./clrpv_key_utility -E -n "com.seqlabs.oem_device_pub_key" -k

device_pub_key.der

Opaque Key Example
Store Opaque Key in the TEE as a named key and a password using clrpv_key_utility. For
information to execute this option, see Opaque Key Example in 4 CoreLockr Crypto API –
Opaque Keys.

7. CORELOCKR CRYPTO OPENSSL ENGINE API
The EmSPARK Suite supports the use of the TEE based crypto engine via OpenSSL. The CoreLockr
Crypto OpenSSL Engine executes cryptographic operations in the TEE using underneath the
CoreLockr Crypto API. The CoreLockr Crypto OpenSSL Engine API has functions that allow:

+ Loading the Engine
+ Setting the Engine behavior
+ Configuring the Engine’s capabilities
After the Engine is loaded, OpenSSL EVP libraries can automatically use it for calculations in
applications. Some functionality is available when loading the engine on the OpenSSL
command line.

In the Kit, corelockr/corelockr_ssl contains:

+ lib, libclrc_util.a library
+ include, header files
+ ssl_engine, the libclrc.so OpenSSL engine
+ docs, for library documentation see ~/docs/html/index
+ README.txt, general API information
+ COPYRIGHT, copyright notice
+ Example applications

In this document 7.1 OpenSSL with Crypto in TrustZone for Secure Communication describes an
example of a server and a client establishing a TLS/SSL connection, 7.2 OpenSSL with Crypto in
TrustZone for Cryptographic Functions describes an application that loads the Engine to
execute cryptographic operations called from the OpenSSL EVP libraries, and 7.3 OpenSSL Using
Named Keys Stored in the TEE illustrates how to load keys stored in the Key Store into OpenSSL.
This tutorial includes examples of OpenSSL command-line commands in 7.4 OpenSSL
Command Line.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 33

 EmSPARK Suite: CoreLockr Libraries User Guide

The Engine supports the algorithms supported by the Crypto API. Note that DES algorithms may
not be enabled in OpenSSL.

7.1. OpenSSL with Crypto in TrustZone for Secure Communication Example
This example consists of a server and a client establishing a TLS/SSL connection.

7.1.1. Background
For simplicity of setting up the example and avoiding the configuration of a server in a
different system, both client and server run on the device. The CoreLockr Crypto OpenSSL
Engine API is used to load the engine in the client application and make it the default for
doing crypto operations within the TLS stack. The client connects to the server and, after the
handshake completes, sends and receives a brief text message. The example includes code
to build the server.

Software and Data Requirements

+ Client application, corelockr/corelockr_ssl/example/client
+ Server application, corelockr/corelockr_ssl/example/server
+ Client and server certificates, corelockr/corelockr_ssl/example/client/certs and

corelockr/corelockr_ssl/example/server/certs

Building and Installing

Change to corelockr/corelockr_ssl/example/ directory and execute make to build the
client and the server application executables. Client and server are preconfigured to run on
the board and read their certificates from a known location.

Transfer the client to the board:

+ executable, client/clrc_ssl_demo_client
+ configuration file, client/demo_client.conf
+ certificates, consisting of client private key (EC P-256) and CA certificates,

client/certs/*

Also transfer the server to the board:

+ executable, server/clrc_ssl_demo_server
+ configuration file, server/demo_server.conf
+ certificates consisting of the server private key and CA certificates, server/certs/*

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 34

 EmSPARK Suite: CoreLockr Libraries User Guide

See corelockr_ssl/example/README.txt for additional information.

7.1.2. Executing the Example

Start the Server

On the board, change to the directory where the clrc_ssl_demo_server application was
transferred to and execute:

./clrc_ssl_demo_server

The server program is listening at the configured port for the client to connect to it.

Start the Client

On the board, in another shell, execute the following command to start the client:

./clrc_ssl_demo_client

The client application prints messages such as

CoreLockr Cipher Probe started

Starting SSL test

The client application may be executed with the “-p” print option which prints the available
TLS suites and engine ciphers i.e. clrc cipher list.

See the Client / Server communication output.

Eventually the client application prints to the console:

Got chat response: Hi from server!

The server application prints to the console:

Got chat: Hi from client!

Sent chat: Hi from server!

Ssl_read: SSL_ERROR_ZERO_RETURN

The last message is not an error; it means that the connection was closed.

The server code does not use the CoreLockr Crypto OpenSSL Engine in this demonstration.
The client code does use the engine under the hood. For flow and code walkthrough, see
corelockr_ssl/example/README.txt.

7.2. OpenSSL with Crypto in TrustZone for Cryptographic Functions Example
The CoreLockr Crypto OpenSSL Engine (clrc) can be loaded in OpenSSL to perform
cryptographic operations in the TEE:

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 35

 EmSPARK Suite: CoreLockr Libraries User Guide

+ In applications using the OpenSSL EVP API
+ In the OpenSSL command line utility

The example application loads the Engine and executes cryptographic operations using
the OpenSSL EVP libraries. 7.4 OpenSSL Command Line presents examples of loading the
Engine in the OpenSSL command line using the “-engine” switch.

7.2.1. Background
This example uses the OpenSSL EVP API. The application loads the clrc engine and uses it to
perform cryptographic operations using the EVP cipher routines. The example illustrates how
to load the clrc engine. The application executes sample operations such as random
number generation, computation of message digests, symmetric encryption and decryption
and CMAC computations.

Software and Data Requirements

CoreLockr EVP example application, corelockr/corelockr_ssl/example_evp

Building and Installing

Change to ~/corelockr_ssl/example_evp and execute make to build the executable
clrc_evp_sample. Transfer clrc_evp_sample to the board. For additional instructions for
building and executing the application, and explanation on flow and code walkthrough to
load the engine please see corelockr_ssl/example_evp/README.txt.

7.2.2. Executing the Example
Change to the directory where the application binary was copied and execute it:

./clrc_evp_sample

The application prints to the console the computed results of crypto operations such as:

RNG

Message digests: SHA256

Encrypt: AES-256-CTR

Decrypt: AES-256-CTR

CMAC-AES-128-CBC

Load Engine Code Walkthrough

When the application starts and before executing cryptographic operations, the application
calls the clrcLoadEngine() function of the CoreLockr Crypto OpenSSL Engine API to load the
CoreLockr Crypto OpenSSL Engine. The engine code is implemented as a shared library
named libclrc.so. This file must be dynamically loaded by the OpenSSL library before it
can be used. This sample function accomplishes that:

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 36

 EmSPARK Suite: CoreLockr Libraries User Guide

int load_engine() {

int ret = 0, hide_private = 0;

extern evp_test_params params;

ret = clrcLoadEngine(params.dyn_lib, ENGINE_METHOD_ALL, hide_private);

return (ret == 1) ? 0 : -1;

}

Detailed load_engine() function overview:

+ int ret = 0, hide_private = 0;

The OpenSSL engine control API provides a way to pass information to an engine that
cannot be passed via the EVP interface. In the case of the CoreLockr Crypto OpenSSL
engine, one command is currently available: the HIDE_PRIVATE command. It is used for
setting a flag in the engine code that determines whether the private values of keys will
be exposed outside of the engine. Setting the flag to a non-zero value has two effects:

▪ OpenSSL key structures do not contain the private values
▪ Any new key added to the underlying CoreLockr Crypto system has the

CLRC_ATTR_EXPORT_AS_PLAIN attribute disabled so that the private values cannot
be read using the attribute fetching functions.

+ extern evp_test_params params;

The libclrc.so library is defined as a parameter to be used in the EVP test, e.g.

evp_test_params params = {

 .dyn_lib = "./libclrc.so",

};

+ ret = clrcLoadEngine(params.dyn_lib, ENGINE_METHOD_ALL, hide_private);

The clrcLoadEngine() function loads the engine and sets the default behavior, where:

▪ params.dyn_lib is the full path to the libclrc.so engine
▪ ENGINE_METHOD_ALL indicates the engine methods to be enabled
▪ hide_private is a flag for disabling access to keys’ private values

Returns 1 on success, or 0 on error and the OpenSSL error stack is updated.

On success, the CoreLockr Crypto OpenSSL engine shared library is loaded, the
specified engine methods are registered, and the flag for hiding private values in
keys is set.

From this point, the EVP functions set up the context with the CoreLockr Crypto
OpenSSL engine.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 37

 EmSPARK Suite: CoreLockr Libraries User Guide

7.3. OpenSSL Using Named Keys Stored in the TEE Example

The CoreLockr Crypto OpenSSL Engine (clrc) enables applications using the OpenSSL EVP
libraries to access named keys saved in the Key Store in the TEE. This example consists of
three interdependent applications whose functions are:

+ Create and store an ECDSA key in the Key Store, using the Crypto API for key store
management. Save the key under the name ECC-256-KEY in the key store.

+ Load a named key from the Key Store into OpenSSL, using the EVP libraries for crypto
operations with the key. The application loads ECC-256-KEY from the Key Store.

+ Delete a named key from the Key Store using the Crypto API. The application deletes ECC-
256-KEY from the Key Store.

7.3.1. ECDSA Key Creation and Storing in the Key Store
This application illustrates how to create a key and save it in the store as a named key that
other applications can use. The application uses the CoreLockr Crypto API to create an
ECDSA key and store it in the Key Store with no password and named as ECC-256-KEY. The
7.3.2 Named Key Use with OpenSSL example uses the ECC-256-KEY key from the Key Store.
For CoreLockr Crypto API documentation, please see
corelockr/corelockr_crypto/CoreLockr_Cryptographic_API.pdf

Software and Data Requirements

+ Store named key example,

corelockr/corelockr_ssl/example_key_store_with_openssl/store_named_key

Building and Installing

In Linux, change to the
~/corelockr_ssl/example_key_store_with_openssl/store_named_key directory and
execute make. The compilation creates the clrc_store_named_key executable. Transfer
clrc_store_named_key to the board in a directory of your choosing.

Executing the Example

Change to the directory where the application binary was copied and execute:

 ./clrc_store_named_key

The application prints the created key attributes and result of storing the key in the key store,
e.g.:

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 38

 EmSPARK Suite: CoreLockr Libraries User Guide

Creating ECDSA key:

 Printing out ECDSA key attributes

Saving the named key in the key store:

 Successfully saved ECC-256-KEY key in the key store, without password

Note that if the ECC-256-KEY name already exists in the Key Store, the application exits with
an error. In such a case, to delete the key name from the key store, execute the
clrc_delete_named_key application explained in 7.3.3 Named Key Deletion from the Key
Store.

Flow and Code Walkthrough

For information see
~/corelockr_ssl/example_key_store_with_openssl/store_named_key/README.txt

7.3.2. Named Key Use with OpenSSL
OpenSSL can use keys stored in the TEE. This application illustrates how to load a named key
from the Key Store into OpenSSL. The application uses the CoreLockr OpenSSL engine API to
load the “clrc” OpenSSL engine and uses the OpenSSL EVP libraries to execute the following
functions:

+ Load ECC-256-KEY, an ECDSA key previously stored in the TEE, into an EVP_PKEY via the
engine

+ Use the ECDSA private key for signing data
+ Use the ECDSA public key for verifying the signature

Software and Data Requirements
~/corelockr_ssl/example_key_store_with_openssl/clrc_use_named_key

Building and Installing

Change to corelockr_ssl/example_key_store_with_openssl/clrc_use_named_key/
directory and execute make to build the application binary, clrc_use_named_key. Transfer
clrc_use_named_key to the board.

Executing the Example

The application loads ECC-256-KEY from the key store to execute cryptographic operations.
To save the key in the key store, previously execute clrc_store_named_key, explained in
7.3.1. Change to the directory where the binary was transferred and execute it:

 ./clrc_use_named_key

When the named key exists, the application prints messages:

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 39

 EmSPARK Suite: CoreLockr Libraries User Guide

Load CoreLockr Cryptographic Engine

Successfully loaded private key: ECC-256-KEY

Computed signature using loaded private key

Successfully loaded public key: ECC-256-KEY

Successful signature verification

Flow and Code Walkthrough

For information see
~/corelockr_ssl/example_key_store_with_openssl/clrc_use_named_key/README.txt

7.3.3. Named Key Deletion from the Key Store
This application deletes the ECC-256-KEY key from the key store. The application uses the
CoreLockr Crypto API to delete the key. If the key name exists, the application deletes it,
otherwise it prints an error message.

For CoreLockr Crypto API documentation, please see
corelockr/corelockr_crypto/CoreLockr_Cryptographic_API.pdf

Software and Data Requirements

+ Delete named key example,

corelockr/corelockr_ssl/example_key_store_with_openssl/ delete_named_key

Building and Installing

In Linux, change to the corelockr/corelockr_ssl/example_key_store_with_openssl/
delete_named_key directory and execute make. The compilation creates the
clrc_delete_named_key executable. Transfer clrc_delete_named_key to the board in a
directory of your choosing.

Executing the Example

Change to the directory where the application binary was copied and execute:

 ./clrc_delete_named_key

The application prints the result of deleting the key from persistent storage, e.g.

ECC-256-KEY key has been deleted from the key store

Flow and Code Walkthrough

See ~/corelockr_ssl/example_key_store_with_openssl/ delete_named_key.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 40

 EmSPARK Suite: CoreLockr Libraries User Guide

7.4. OpenSSL Command Line

The CoreLockr Crypto OpenSSL Engine can be loaded on the OpenSSL command-line utility
to execute some operations. If libclrc.so is stored within the default location (e.g.
/usr/lib/arm-linux-gnueabihf/openssl-1.0.0/engines/ on Ubuntu ARM systems),
then it can be loaded by the OpenSSL utility using the “-engine clrc” option, for example,
secure hashing:

echo Sample | openssl sha256 –engine clrc

The OpenSSL command line cannot use key tokens and therefore is unable to access keys
stored in the TEE.

8. CORELOCKR TLS IO API
The Transport Layer Security (TLS) protocol is used to provide secure communication over the
internet. It is designed to protect the secrecy and integrity of the communication from external
factors. The CoreLockr TLS IO API is the Rich OS interface to an implementation of TLS client code
that runs within the TEE. Running the TLS code within the TEE provides some security from
snooping and tampering on the device itself.

The CoreLockr TLS IO provides access to named keys and certificates that exist within the
CoreLockr secure storage system, such as provisioned keys and certificates, Key Store and
Certificate Store. It also provides access to cryptographic operations within the CoreLockr
Crypto system in the TEE. The CoreLockr Secure Certificates system is used to verify the peer’s
certificates during the mutual authentication step when the TLS communication is being
established.

Kit Contents

In the Kit, corelockr/corelockr_tlsio contains:

+ lib, libseqr_corelockr_tlsio.so library
+ include, header file
+ ta, A37F954E-303F-6D5D-B81685157929ADA2.stp associated TA
+ docs, for library documentation see ~/docs/html/index
+ README.txt, general API information
+ COPYRIGHT, copyright notice
+ Example application

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 41

 EmSPARK Suite: CoreLockr Libraries User Guide

8.1. Communication with a Server Example

The example uses the CoreLockr TLS IO API in the client application to communicate with an
OpenSSL-based server. The client connects to the server and, after the handshake
completes, sends and receives a brief text message.

There are two mutual authentication scenarios demonstrated in this example:

1) The client uses the provisioned device key and certificate,

2) The client uses an externally created key and certificate.

In the first scenario, the device key and certificate are specified using the names under
which they are stored in secure storage. The key contents are not exposed to the Rich OS. In
the second scenario, the key and certificate are provided as PEM-format files from the Rich
OS. In both cases, the TLS encryption takes place within the CoreLockr TLS IO Trusted
Application, and all of the secrets associated with that are kept in the TEE.

The server program is the same as is used in 7.1 OpenSSL with Crypto in TrustZone for Secure
Communication example. However, different configuration files and certificates/keys are
provided for the two scenarios in this example. For scenario 1, the server requires the OEM
root certificate for verifying the device’s certificate. Its own certificate was signed with the
same CA, so the device verifies it with the provisioned OEM Root Certificate. For scenario 2,
the server and device certificates were signed with the same external CA, and both sides
require the ca-ext.crt certificate to verify each other’s certificate.

Building and Installing

+ Run “make” within the example directory to build the client/clr_tls_demo_client and
server/clrc_ssl_demo_server applications

+ Transfer the client/clr_tls_demo_client, client/demo_client.conf.prov,
client/demo_client.conf.ext, server/clrc_ssl_demo_server,
server/demo_server.conf.prov and server/demo_server.conf.ext files to the
board in a directory of your choosing. Transfer the private EC client and server keys, and
the client, server and CA certificates to a certs/ directory in that same location.

Flow and Code Walkthrough

For information see ~/corelockr_tlsio/example/README.txt.

Executing the Example

These steps must be performed on the board in Linux.

+ Change to the directory where the example applications were transferred to.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 42

 EmSPARK Suite: CoreLockr Libraries User Guide

+ If the Trusted Application was built to use the CoreLockr Secure Certificates API for
verification, then the certs/ca-ex.crt certificate must be added to the Certificate Store
on the device for scenario 2 to work properly. The clrsc_example application from the
corelockr_cert example can be used to add the certificate. Build that example if
necessary, and then run the following command

 <path-to-example-application>/clrsc_example a certs/ca-ext.crt

The CA certificate for scenario 1 was provisioned on the board, so adding it to the secure
certificate store is not necessary.

+ Execute the following command to start the demo server for scenario 1:

 ./clrc_ssl_demo_server –f demo_server.conf.prov

 or for scenario 2:

 ./clrc_ssl_demo_server –f demo_server.conf.ext

The server program is listening at the configured port for the client to connect to it. The
server is configured to use different ports for the two scenarios, so both instances can be
left running at the same time.

+ In another shell, execute the following command to start the demo client for scenario 1:

./clr_tls_demo_client –o demo_client.conf.prov

or for scenario 2:

./clr_tls_demo_client –o demo_client.conf.ext

The client application should eventually print:

"Got chat response: Hi from server!"

The server application should print:

"Got chat: Hi from client!

 Sent chat: Hi from server!

 Ssl_read: SSL_ERROR_ZERO_RETURN"

The last message is not an error; it means that the connection was closed.

9. CORELOCKR SECURE CERTIFICATES API
The CoreLockr Secure Certificates library and accompanying Trusted Application (TA) leverage
the capabilities of CoreTEE™ to provide secure storage and management of X.509 v3 Certificate
Authority certificates (CAs). This section provides an overview of the API functionality and

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 43

 EmSPARK Suite: CoreLockr Libraries User Guide

example applications. The CoreLockr TLS IO API uses the CoreLockr Secure Certificates system to
verify the peer's certificates during the mutual authentication step when the TLS
communication is being established. The API has functionality to:

+ Verify certificates against known Certificate Authorities stored in the Certificate Store and
provisioned certificates

+ Manage Certificate Authority certificates: add, update and delete CA certificates stored in
the Certificate Store in the TEE

+ Manage a Certificate Revocation List, CRL
+ Manage the signing key of certificate management commands
+ Enable rotation of certificates provisioned on the device
+ Extract from the TEE the provisioned certificates
+ Extract from the TEE the Device Certificate Signing Request (CSR) generated during

provisioning

Management commands modifying the Certificate Store or the provisioned certificates must
be signed with an authorized key, this way the OEM has ownership of the certificates managed
in the TEE. The authorized signing key is the OEM Command Key. Such commands are
generated on a secure server and sent to the device for verification and execution.

On the device, the Secure Certificates API verifies the signature before executing such
commands. On the device, the API verifies the signature using the OEM Command Public Key
(CLRC_OEM_COMMAND_PUBLIC_KEY) contained in the OEM Command Certificate in the TEE
(CLRSC_OEM_COMMAND_CERT). Please see Table 1 – Provisioned Keys and Certificates for OEM
Usage Scenarios.

Note that commands to verify certificates against known CAs in the TEE do not need to be
signed.

There are two classes of certificates in the CoreLockr Secure Certificates API:
+ Provisioned certificates, these certificates are provisioned in non-volatile memory when the

device firmware is installed. These certificates can be accessed and managed through the
device lifecycle using proper verifications

+ Certificate Store, these certificates exist entirely within the TEE's persistent object store. The
Certificate Store includes Certificate Authorities managed during runtime using the Secure
Certificates API. It also includes the certificate revocation list.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 44

 EmSPARK Suite: CoreLockr Libraries User Guide

The two classes are managed differently within the API. The sections below explain the
differences.

Kit Contents

In the Kit, corelockr/corelockr_cert contains:

+ docs, library documentation
+ lib, libseqr_corelockr_cert.so library
+ include, header files
+ ta, 222A521C-62CB-0653-BCE5DD727660FAF0.stp associated TA
+ README.txt, general API information
+ COPYRIGHT, copyright notice
+ examples, example application with source code, explained in 9.1
+ README_named_certificates.txt, description of STP structure and STP file creation to

update provisioned certificates
+ ~/bin/make_named_cert_stp.sh, reference script to generate STP files for updating

provisioned certificates

In corelockr/examples/AWS is an example application explained in 9.4 Connecting to AWS IoT
Core.

9.1. Provisioned Certificates
These certificates are provisioned in non-volatile memory when the device firmware is
installed. The Secure Certificates API allows access to these certificates by a name defined
in the clrsc_ta_commands.h header file, i.e.

~/corelockr_cert/include/clrsc_ta_commands.h

#define CLRSC_OEM_CLOUD_CERT "com.seqlabs.oem_cloud_cert"

#define CLRSC_OEM_ROOT_CERT "com.seqlabs.oem_root_cert"

#define CLRSC_OEM_PAYLOAD_CERT "com.seqlabs.oem_payload_cert"

#define CLRSC_OEM_COMMAND_CERT "com.seqlabs.oem_command_cert"

#define CLRSC_OEM_DEVICE_CERT "com.seqlabs.oem_device_cert"

#define CLRSC_OEM_DEVICE_CSR "com.seqlabs.oem_device_csr"

#define CLRSC_EMPOWER_CLOUD_CERT "com.seqlabs.emp_cloud_cert"

#define CLRSC_EMPOWER_ROOT_CERT "com.seqlabs.emp_root_cert"

#define CLRSC_EMPOWER_DEVICE_CERT "com.seqlabs.emp_device_cert"

#define CLRSC_EMPOWER_DEVICE_CSR "com.seqlabs.emp_device_csr"

Provisioned certificates are updated using the clrscUpdateNamedCertificate() function.
Updating a named certificate also updates the public key it contains. Such public keys can
be accessed using the CoreLockr Crypto API, as explained in 3 CoreLockr Crypto API. The

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 45

 EmSPARK Suite: CoreLockr Libraries User Guide

device certificates whose associated keys are generated during provisioning are exceptions,
CLRSC_OEM_DEVICE_CERT and CLRSC_EMPOWER_DEVICE_CERT. Updating these device
certificates only updates the certificate data but not the corresponding device key.

Note: The EMSPARK_KEYS_CERTS.pdf describes the certificates and keys for provisioning on
the device, their origin and configuration. It also describes how such certificates and keys
can be accessed from the Rich OS after provisioning. This document is provided with the
EmSPARK Development Kit or upon request.

For reasons of security, when updating provisioned certificates, the new certificate file, its
name as declared in clrsc_ta_commands.h, command and OEM Command Key signature
must be provided in the form of an STP file. The README_named_certificates.txt explains
the STP file format and storage of the provisioned certificates. The supplied
bin/make_named_cert_stp.sh shell script is a reference implementation for creating the
STP files.

The OEM Command Key can be changed through the device life cycle. The Secure
Certificates API allows updating the OEM Command Public Key by replacing the
CLRSC_OEM_COMMAND_CERT certificate. To make this change, as with any management
command, the command updating the CLRSC_OEM_COMMAND_CERT must be signed with the
current OEM Command Key and verified on the device.

Updating any of the provisioned certificates requires root privileges. The command to
update the provisioned certificates writes back to the partition where the manifest
containing the certificates is stored. Writing to this partition is restricted to root.

Figure 4 illustrates the command flow to update a provisioned certificate. On a customer
server, a STP file is created containing the certificate name, certificate contents, command
and signature of that data. The STP file shall be transferred to the device. On the device, an
application uses the Secure Certificates API to verify the signature against the OEM
Command Public Key available in the TEE. The API update function validates and
authenticates the STP file contents. If the verification succeeds, the command updating the
provisioned certificate is executed. The command updates the certificate in the manifest
and its copies as described in README_named_certificates.txt.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 46

 EmSPARK Suite: CoreLockr Libraries User Guide

Figure 4 Provisioned Certificate Management Flow

9.2. Certificate Store
The Certificate Store includes Certificate Authority certificates managed through the device
life cycle. It also includes the certificate revocation list (CRL). The Certificate Store uses an
offline CRL, therefore, the OEM must add certificates to this Revocation List manually. Any
attempt to connect this CRL to an online source would traverse the Rich OS (non-secure
world) breaking the isolation provided by the TEE.

Commands modifying the Certificate Store must be signed with the Command Verification
Private Key. On the device, the OEM Command Verification public key is used to verify that
the command is legitimate and can be executed. These commands include certificate
authority management functions such as clrscAddCertificateAuthority(),
clrscDeleteCertificateAuthority(), clrscUpdateCertificateAuthority(), and
certificate revocation functions, clrscAddCertificateRevocation().

Commands to verify certificates against known CAs stored in the Certificate Store do not
need to be signed.

Figure 5 illustrates the flow of a management command. On a customer server, a
command modifying the Certificate Store and the certificate in question are signed with the
OEM Command Private key (the DER encoded certificate and command are hashed and the
hash signed). The signed management command and CA certificate shall be transferred to
the device. On the device, an application uses the Secure Certificates API to verify the
signature against the OEM Command Public Key available in the TEE. If the verification
succeeds, the command modifying the Certificate Store is executed.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 47

 EmSPARK Suite: CoreLockr Libraries User Guide

Figure 5 Certificate Store Management Flow

9.3. Certificate Authority Management Example
The example application illustrates capabilities of the EmSPARK Suite and the CoreLockr
Secure Certificates (CLRSC) library to provide secure storage and management of X.509 v3
certificates.

In order to simplify the configuration and building of the example, operations usually
performed on a secure server and securely sent to the board are instead executed on the
board. For instance, commands for certificate authority (CA) management that would be
produced and signed on a server and sent to the device to be executed are instead
produced and signed on the board.

9.3.1. Background
The application performs the following operations:

+ Load Certificate Authority certificates and certificates from the local file system
+ Delete Certificate Authority certificates
+ Update Certificate Authority certificates
+ Verify certificates
+ Add certificates to the Certificate Revocation List (CRL) in the TEE
+ Extract certificates preinstalled in the TEE and write them as files in PEM format
+ Update the provisioned certificates preinstalled in the TEE

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 48

 EmSPARK Suite: CoreLockr Libraries User Guide

The application uses the OpenSSL library to load certificates from the local file system,
convert the certificates from X509 structures to a DER encoded byte string and pass the
certificates to the CLRSC API.

Software and Data Requirements

+ CoreLockr Secure Certificates example application,
corelockr/corelockr_cert/examples

+ Key and certificate files provided with the example
▪ OEM Command Private Key clrsc_example_command_key.pem: used to sign the

certificate management commands
▪ OEM Command Certificate: installed during provisioning and loaded in the TEE,

exposed to the API as CLRSC_OEM_COMMAND_CERT
▪ Certificate authority sample: clrsc_example_ca_cert.pem
▪ Certificates issued by sample CA clrsc_example_ca_cert.pem:

clrsc_example_server_01.pem and clrsc_example_server_02.pem
▪ clrsc_example_ca_key.pem private key to enable the user to generate additional

certificates

In the example, the OEM Command Private Key corresponds to an OEM private key used to
sign commands. This private key used for signing the certificate management commands
usually is not found on the device. To make easy to set up the test application and avoid the
configuration of an external system that sends signed commands to the board, the private
key is provided and the example application on the board uses it to sign the commands.

The application uses the OEM Command Private Key clrsc_example_command_key.pem to
sign the following commands sent to the TEE (such commands usually are received from a
secure server):

▪ Load Certificate Authority certificates and certificates from the local file system
▪ Delete Certificate Authority certificates
▪ Update Certificate Authority certificates
▪ Add certificate to the Certificate Revocation List (CRL) in the TEE. This is specific for

certificates.

Building and Installing

Change to corelockr/corelockr_cert/examples and execute make which builds the
executable clrsc_example. Transfer the executable to the board to a directory of your
choice. Transfer to the same directory the certs directory containing the certificates. For
additional instructions see corelockr_cert/examples/README.txt.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 49

 EmSPARK Suite: CoreLockr Libraries User Guide

9.3.2. Executing the Example
To manage certificates, verify that the date on the board is current and execute the
commands as instructed below.

Add a Certificate Authority to the TEE

To add a certificate authority to the TEE execute

./clrsc_example a certs/clrsc_example_ca_cert.pem

where “a” adds the CA certificate, and “certs/clrsc_example_ca_cert.pem” is the path to
the file containing the certificate.

The application prints messages, including a confirmation:

Successfully saved certificate to TEE

Verify the Certificate Authority

To verify a certificate authority execute

./clrsc_example v certs/clrsc_example_ca_cert.pem

where “v” verifies clrsc_example_ca_cert.pem against the known certificate authorities.

After successful verification, the application prints:

Result of CLRSC verify function is: 1. Certificate is: VERIFIED

The verification of the clrsc_example_ca_cert.pem CA certificate is successful because
the certificate is self-signed and the certificate was already added in the TEE. Attempting to
verify an unknown CA certificate will return “NOT VERIFIED”.

Verify Certificates against the CA

To verify the example certificates against the CA execute

./clrsc_example v certs/clrsc_example_server_01.pem

./clrsc_example v certs/clrsc_example_server_02.pem

The verification of these certificates is successful because the issuing CA
(clrsc_example_ca_cert.pem) was previously added in the TEE.
Verification of a certificate issued by an unknown CA returns “NOT VERIFIED”.

Add a Certificate to the Certificate Revocation List (CRL)

To add a certificate to the CRL execute

./clrsc_example r certs/clrsc_example_server_01.pem

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 50

 EmSPARK Suite: CoreLockr Libraries User Guide

which produces this output:

Successfully add certificate to CRL in TEE

After added to the CRL, the certificate does not verify. Execution of

./clrsc_example v certs/clrsc_example_server_01.pem

produces this output

Result of CLRSC verify function is: 0. Certificate is: NOT VERIFIED

Entries to the CRL have effect only over certificates. Adding CA certificates to the CRL simply
prevents the CA from being verified, but certificates issued with such CA still verify. This is
standard functionality. After adding a certificate to the revocation lists, an attempt to add it
to the TEE again will return an error.

Update a Certificate

A certificate may be updated

./clrsc_example u certs/clrsc_example_server_02.pem

which returns

Successfully updated certificate in TEE

Revoke a Certificate Authority

A Certificate Authority may be removed from known Certificate Authorities in the TEE

./clrsc_example d certs/clrsc_example_ca_cert.pem

After the CA removal, the certificates issued with the removed CA do not verify.

Extract Certificates from the TEE

Certificates saved in the TEE during the firmware flashing can be extracted and written as
files in PEM format. The following certificates saved in the TEE have a known name and
assigned an ID in the application:

ID = 0 – Get OEM Cloud Certificate

ID = 1 – Get OEM Root Certificate

ID = 2 – Get OEM Payload Certificate

ID = 3 – Get OEM Command Certificate

ID = 4 – Get OEM Device Certificate

ID = 5 – Get OEM Device CSR

ID = 6 – Get EmPower Cloud Certificate

ID = 7 – Get EmPower Root Certificate

ID = 8 – Get EmPower Device Certificate

ID = 9 – Get EmPower Device CSR

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 51

 EmSPARK Suite: CoreLockr Libraries User Guide

To generate a file of the OEM Cloud Certificate which is option “ID = 0” execute

./clrsc_example g 0

This creates clrsc_oem_cloud_cert.pem located in the directory where the application
was executed. If the device was flashed with the provided certs in the Kit,
clrsc_oem_cloud_cert.pem corresponds to the AWS IoT root CA certificate.

To extract the OEM Root Certificate, execute

./clrsc_example g 1

which creates clrsc_oem_cert.pem

To extract the OEM Device Certificate, execute

./clrsc_example g 4

which creates clrsc_device_cert.pem

Return Codes

The CoreLockr Secure Certificates API returns status codes from the TEE. Please refer to the
coretee_dev_kit/tc_sdk/include/tee_client_api.h or the API documentation for
return codes.

9.4. Connecting to AWS IoT Core
This example illustrates how to use the EmSPARK Suite and mbedTLS to connect to an AWS
server. This section explains concepts and how to configure the example. The contents are
located in corelockr/examples/AWS which includes:

+ Application source code
+ AWS embedded C SDK Version 3.0.1
+ Patch against the 3.0.1 version
+ Sample files to generate a user’s CA

9.4.1. Background
AWS allows devices to use X.509 certificates signed and issued by a customer defined
certificate authority (CA) to connect and authenticate with AWS IoT Core. This is one of the
methods allowed for authentication by “things” using MQTT protocol. MQTT is using TLS as a
secure transport mechanism. In IoT, each “thing” needs to be uniquely identified by the

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 52

 EmSPARK Suite: CoreLockr Libraries User Guide

cloud application and that is realized by using device certificates as identifiers. More
information can be found in the following references:

+ https://docs.aws.amazon.com/iot/latest/developerguide/client-authentication.html
+ https://docs.aws.amazon.com/iot/latest/developerguide/iot-authorization.html
+ https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html

Once a device is registered with the AWS IoT Core, the authentication is performed using a
standard TLS mutual authentication based on the X.509 certificate associated to the thing.
To register a device this example uses the Just in Time Provisioning, which will check an
unknown device certificate’s signing Certificate Authority (CA). If the CA is in the list of CA’s
on the IoT Core, then the registration process is performed. More information can be found
here:

https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html.

The device certificate is intended for establishing TLS connections with mutual
authentication. This example illustrates how to use the device certificate and TrustZone
based crypto for establishing a TLS connection with Amazon AWS IoT Core. The example will
demonstrate the TLS Connection, using MQTT over TLS, and interacting with Device Shadow.

During initial device provisioning, the EmSPARK Suite creates the OEM Device Key and signs a
Device Certificate with the EmSPARK Defined OEM Key. To execute TLS mutual authentication
and session establishment with Amazon AWS IOT, the user will update two provisioned
certificates managed in the TEE with user’s generated certificates:

+ OEM Root CA, the EmSPARK defined OEM CA provisioned on the device will be replaced
with a user defined OEM Root CA certificate.

+ OEM Device Certificate generated during provisioning and signed with the EmSPARK
defined OEM Key will be replaced with a device certificate signed with the user defined
OEM Root Key.

The OEM Device Certificate needs to be signed with the private key that created the OEM
Root CA so the two certificates are chained. The EmSPARK Suite provides the tools to
generate the new OEM Device Certificate and update the OEM Root CA and Device
Certificate in the TEE. The sections below describe how to perform the needed steps.

The example requires the user to create an AWS account and upload the OEM Root CA to
AWS. This is due to the fact that Amazon AWS does not allow the activation of the same OEM
Root CA for multiple AWS accounts and the EmSPARK Defined OEM CA is the same on all
devices.

https://www.secedge.com/
https://docs.aws.amazon.com/iot/latest/developerguide/client-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-authorization.html
https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html
https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 53

 EmSPARK Suite: CoreLockr Libraries User Guide

The example uses the following keys and certificates:

1. OEM Cloud Certificate, during provisioning, the Evaluation Kit installs the AWS IoT Root
Certificate required for communication with AWS, CLRSC_OEM_CLOUD_CERT.

2. OEM Root Key, this private key is generated by the user. It is used to sign the OEM Device
Certificate and to complete the AWS Custom CA Certificate registration process with
AWS IoT.

3. OEM Root CA, the user creates this certificate authority and saves it in the TEE,
CLRSC_OEM_ROOT_CERT. This certificate replaces the EmSPARK CLRSC_OEM_ROOT_CERT
provisioned on the device and the associated OEM Public Key it contains.

4. OEM Device Key, the device private and public keys are generated during provisioning
and stored in the TEE, CLRC_OEM_DEVICE_PRIVATE_KEY and
CLRC_OEM_DEVICE_PUBLIC_KEY. Using the CoreLockr APIs, applications can access the
OEM Device Private and OEM Public Key from the Rich OS (i.e. Linux). The OEM Device
Private Key can be accessed for operations, even though applications in Linux do not
have visibility of the private key attributes. The OEM Device Public Key is the key that the
Rich OS (Linux) can see. The OEM Device Key is used to sign the Device Certificate Signing
Request, CLRSC_OEM_DEVICE_CSR.

5. OEM Device Certificate, the user generates the CLRSC_OEM_COMMAND_CERT signed with
the user’s OEM Root Key and saves it in the TEE. The execution of the TLS AWS example will
register the Device Certificate with the AWS IoT cloud.

6. OEM Command Public Key, installed during provisioning, CLRC_OEM_COMMAND_PUBLIC_KEY
is used to verify the commands that replace the OEM Root Certificate and OEM Device
Certificate in the Certificate Store.

The example preparation includes steps in a Linux development environment, on the device
and on AWS Console. The following is an outline of the steps described in the next sections of
this document:

+ In the Linux development environment, build the CoreLockr Secure Certificate example
application included in the CoreLockr Kit to manage and store certificates in the TEE,
please see 9.4.2

+ On the Device, extract the OEM Device Certificate Signing Request
+ In the Linux development environment, generate custom OEM Root Key and Certificate

and OEM Device Certificate, and prepare the files needed for installation on the device
+ On the Device, customize the OEM Root Certificate and OEM Device Certificate in the TEE,

these steps use the CoreLockr Secure Certificate example application, please see 9.4.3
+ On the AWS Console, configure user’s account for AWS TLS example, see 9.4.6

▪ AWS IoT, register the OEM Root CA certificate

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 54

 EmSPARK Suite: CoreLockr Libraries User Guide

▪ AWS IoT, create a policy to manage access in AWS
▪ AWS Lambda, create a Lambda function to configure actions during the Just in Time

Registration
+ In the Linux development environment, configure and build the TLS AWS example

application, see 9.4.7
+ On the Device, execute the TLS AWS example application, see 9.4.8

Note: In order to simplify the configuration and building of the example, some operations
usually performed on a secure server and securely sent to the device are instead executed
on the device. For instance, signing the commands to update the certificates on the device
that would be produced on a server is instead signed on the device.

9.4.2. Linux Development Environment: Prepare Application and Key for
Certificate Updates

The TLS AWS example application uses User’s keys and certificates, therefore some certs
installed during provisioning need to be replaced. The CoreLockr Secure Certificates API
enables the rotation of those certificates. These instructions will use the Certificate Authority
Management example -9.1- to update the OEM Root Certificate and OEM Device Certificates
in the TEE. To accomplish this:

+ Build the Certificate Authority Management application binary, clrsc_example,
explained in 9.1

+ Transfer the clrsc_example executable to the device

9.4.3. Device: Extract OEM Device Certificate Signing Request
Use the CoreLockr Secure Certificates example to extract the OEM Device CSR from the TEE:

+ Change to the directory where clrsc_example was transferred
+ Extract the OEM Device CSR from CoreTEE using the clrsc_example example

./clrsc_example g 5

Where g 5 extracts the certificate signing request (ID = 5 – Get OEM Device CSR). The
application generates a DER encoded file, clrsc_oem_device_csr.der.

+ Transfer the clrsc_oem_device_csr.der to the Linux development environment,
~/corelockr/examples/AWS/tools/ directory

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 55

 EmSPARK Suite: CoreLockr Libraries User Guide

9.4.4. Linux: Prepare User’s OEM Root Certificate and OEM Device Certificate
Because these are provisioned certificates, to update them on the device requires that an
STP file be provided. This allows the operation to be validated and authenticated before it is
permitted to continue. This example instructs how to generate the certificates and how to
generate the STP files.

To generate the certificates, ~/corelockr/examples/AWS/tools/ contains a sample CA
configuration file, ~/AWS/tools/conf/ca.conf, and auxiliary text files to generate a CA. The
user can use these files to generate a custom OEM Root Certificate and OEM Device
Certificate.

To generate the STP files, the example instructs the use of
~/corelockr/corelockr_cert/bin/ make_named_cert_stp.sh. The script takes the
following arguments:

+ Signing key, -k: the private key associated with CLRC_OEM_COMMAND_PUBLIC_KEY
provisioned on the device. This key is used to authenticate commands that change trust
on the device. In the Evaluation Kit, the sample private key file associated with
CLRC_OEM_COMMAND_PUBLIC_KEY is supplied with the Secure Certificates example
application.

+ ID or name under which the certificate is accessed, -n: name of the provisioned
certificate defined in ~/corelockr/corelockr_cert/include/clrsc_ta_commands.h.

+ Path to the certificate file, -c: the new certificate file in PEM or DER encoding.
+ The path to the output STP file, -o: file to be transferred to the device containing the

certificate name, new certificate contents and signature of that data.

Here is an overview and then detailed instructions.

Overview

1. Generate a new OEM Root Key and OEM Root CA
2. Create a new Device Certificate signed with the user’s new OEM Root Key
3. Generate STP files containing the certificates and transfer them to the device

NOTE: The description in the following sections assumes that the OEM Root Key is a
customer’s sample key used for testing purposes.

User Instructions: Detail

+ Change to ~/corelockr/examples/AWS/tools where clrsc_oem_device_csr.der was
transferred

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 56

 EmSPARK Suite: CoreLockr Libraries User Guide

+ Generate the custom OEM Root Key and OEM Root CA. To generate a self-signed CA
certificate, in ~/AWS/tools/:
▪ Customize ~/AWS/tools/conf/ca.conf or produce a CA configuration file used for

signing the Device CSR. Note that the example requires that key and cert be ECDSA
P256. Those parameters should not be changed to avoid errors during the
application execution.

+
▪ Generate new OEM Root Key, in this example the filename is

aws_custom_ca_key.pem:

openssl ecparam -out aws_custom_ca_key.pem -name prime256v1 -genkey

▪ Generate custom OEM Root CA cert, e.g. aws_custom_ca_cert.pem:

openssl req -x509 -config conf/ca.conf -newkey

ec:aws_custom_ca_key.pem -sha256 -nodes -out aws_custom_ca_cert.pem -

outform PEM

The user must register the OEM Root CA file with AWS (please see Register the CA to
the AWS IoT section in 9.4.6). The following section assumes the OEM Root CA filename
is aws_custom_ca_cert.pem.

+ Generate the custom OEM Device Certificate
▪ Convert the OEM Device CSR transferred from the device from DER to PEM encoding

openssl req -in clrsc_oem_device_csr.der -inform DER -out

clrsc_oem_device_csr.pem -outform PEM

▪ Generate the new OEM Device Certificate by signing the PEM encoded OEM Device
CSR and using the user’s new OEM Root Key and OEM Root CA

openssl ca -verbose -config conf/ca.conf -policy signing_policy -

extensions signing_req -out new_device_cert.pem -infiles

clrsc_oem_device_csr.pem

Where conf/ca.conf is user configured and expects aws_custom_ca_key.pem and
aws_custom_ca_cert.pem key and certificate names. The output is
new_device_cert.pem.

Answer “y” to the questions “Sign the certificate” and “commit?”. To comply with
the TLS mutual authentication protocol, the new Device Certificate is signed with the
new OEM Root Key.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 57

 EmSPARK Suite: CoreLockr Libraries User Guide

+ Generate the STP files containing the certificates generated in the previous step and that
replace OEM Root Certificate and OEM Device Certificate. In ~/tools/:
▪ Create a symbolic link in which the source is the key to sign Certificate Store

management commands, OEM Command Key, provided with the Secure Certificates
API example
~/corelockr_cert/examples/certs/clrsc_example_command_key.pem and
destination is clrsc_command_signing_key.pem, e.g.:

ln -s ../../../corelockr_cert/examples/certs/clrsc_example_command_key.pem

clrsc_command_signing_key.pem

+ Generate the STP file to update the OEM Root Certificate
• Execute:

../../../corelockr_cert/bin/make_named_cert_stp.sh -k

clrsc_command_signing_key.pem -n "com.seqlabs.oem_root_cert" -c

aws_custom_ca_cert.pem -o new_oem_root_cert.stp

Where -k clrsc_command_signing_key.pem is the private key that authorizes
commands, -n "com.seqlabs.oem_root_cert" is the name of the OEM Root
Certificate defined name, -c aws_custom_ca_cert.pem is the new OEM Root
Certificate filename and -o new_oem_root_cert.stp is the STP file to transfer to the
device.

• Generate the STP file to update the OEM Device Certificate

../../../corelockr_cert/bin/make_named_cert_stp.sh -k

clrsc_command_signing_key.pem -n "com.seqlabs.oem_device_cert" -c

new_device_cert.pem -o new_oem_device_cert.stp

+ Transfer to the device the STP files containing the certificate name, certificate contents
and signature of that data, e.g. new_oem_root_cert.stp and
new_oem_device_cert.stp.

9.4.5. Board: Customize the Device Certificate and OEM Root Certificate
After transferring the STP files to the device, the user replaces the provisioned certificates
with the custom certificates. Here is an overview of steps on the device and then detailed
instructions.

1. For the sake of simplicity, the Secure Certificates example application uses the provided
sample private key file to sign on the board the commands updating the certificates

2. Use the CoreLockr Secure Certificates example to update the EmSPARK Defined OEM Root
CA in the TEE with the new OEM Root CA and store it in non-volatile-memory so that the
user’s certificate will be persistent after device reboots

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 58

 EmSPARK Suite: CoreLockr Libraries User Guide

3. Use the CoreLockr Secure Certificates example to update the OEM Device Certificate in
the TEE with the new one and store it in non-volatile-memory

User Instructions: Detail

Execute the following steps to update in the TEE the OEM Root CA and OEM Device Certificate:

+ Change to the directory where the Secure Certificates example application is located,
~/corelockr/corelockr_cert/examples/clrsc_example

+ Transfer to this directory the command signing key located in the Kit in
~/corelockr/corelockr_cert/examples/certs/clrsc_example_command_key.pem

+ The clrsc_example example expects that the signing key for certificate management
commands be named clrsc_command_signing_key.pem, thus create a symbolic link

ln -s clrsc_example_command_key.pem clrsc_command_signing_key.pem

+ Replace in the TEE the provisioned OEM Root CA certificate with the new OEM Root CA
contained in the STP file. Because updating any of the provisioned certificates requires
root privileges, as root execute

./clrsc_example n new_oem_root_cert.stp

Where n updates the named certificate identified in the STP file. Successful execution
prints messages such as Successfully updated the named certificate,
corresponding to com.seqlabs.oem_root_cert defined in clrsc_ta_commands.h

#define CLRSC_OEM_ROOT_CERT "com.seqlabs.oem_root_cert"

Updating the OEM Root CA also updates the OEM Root Public Key in the TEE, i.e. the key
value defined in ~/corelockr/corelockr_crypto/include

#define CLRC_OEM_PUBLIC_KEY "com.seqlabs.oem_pub_key"

+ Replace the OEM Device Certificate in TEE with the new certificate contained in the STP
file, as root execute

./clrsc_example n new_oem_device_cert.stp

Where n updates the named certificate and contents in the STP file. Successful execution
prints messages such as Successfully updated the named certificate,
corresponding to com.seqlabs.oem_device_cert defined in clrsc_ta_commands.h

#define CLRSC_OEM_DEVICE_CERT "com.seqlabs.oem_device_cert"

Now, the OEM Root CA and OEM Device Certificate are updated with the user created
certs.

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 59

 EmSPARK Suite: CoreLockr Libraries User Guide

9.4.6. AWS Console: Configure User’s Account for AWS TLS Example

The user must go through the following steps to set and test the TLS connectivity with AWS
IoT (step by step instructions are provided by the Amazon website. Some steps are detailed
below with screenshots: http://docs.aws.amazon.com/iot/latest/developerguide/iot-
gs.html):

+ Create an Amazon AWS account
+ Sign in to the AWS IoT Console
+ Register the CA to the AWS IoT
+ Create a Publish/Subscribe Policy
+ Create a Lambda Function

1. Register the CA to the AWS IoT

As per Amazon AWS,

to register your CA certificate, you must get a registration code from AWS IoT, sign a private
key verification certificate with your CA certificate, and pass both your CA certificate and a
private key verification certificate to the register-ca-certificate CLI command. The Common

Name field in the private key verification certificate must be set to the registration code
generated by the get-registration-code CLI command. A single registration code is generated
per AWS account. You can use the register-ca-certificate command or the AWS IoT console to
register CA certificates.

To register the CA certificate, follow the instructions in the screenshot below and check the
two boxes in order to load and activate the CA.

In Step 4, “Use the CSR that was signed with the CA private key” use the AWS Custom CA
Certificate and AWS Custom CA Key, i.e. “-CA aws_custom_ca_cert.pem –Cakey
aws_custom_ca_key.pem”.

In Step 5, “Select CA certificate”, upload the AWS Custom CA Certificate, i.e.
aws_custom_ca_cert.pem.

https://www.secedge.com/
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 60

 EmSPARK Suite: CoreLockr Libraries User Guide

2. AWS Console: Create a Policy

Create a policy. Appendix B: Policy provides a sample global policy for the following actions:

+ Connect
+ Update the thing shadow
+ Publish
+ Subscribe
+
+ In the policy, configure the Amazon Resource Names (ARNs) region and AWS account-id

for your account. In the example policy,
▪ us-west-1 corresponds to the region
▪ 123456789012 corresponds to the ID of the AWS account that owns the resource

+
+ AWS information about Amazon Resource Names (ARNs):
+ https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

3. AWS Console: Create a Lambda Function

The device will self-register the first time it connects to AWS. To configure the AWS actions
during the Just in Time Registration, the user creates a Lambda function. Appendix C:
Lambda Function is a python file ready to use as the Lambda function code that does the
following:

+ Get environment and event data
+ Get device certificate information

https://www.secedge.com/
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 61

 EmSPARK Suite: CoreLockr Libraries User Guide

+ Create a thing (thing name is thing_name = cn_string + ":" + subj_key_id)
▪ In this documentation

Device_Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c
+ Attach policy to device certificate
+ Activate the certificate to allow connections from that device
+ Attach certificate to thing

On the AWS console, select Lambda from the Services options. In the “Create function” page
enter the required information:

+ “Function name”: user’s choice. This example uses “just_in_time”
+ “Runtime” option select “Python 3.8”
+ “Permissions”, select the desired role, however, selecting “Create a new role with basic

Lambda permissions” is sufficient

In “Configuration”:

+ “Add trigger” select “AWS IoT”
▪ Select Custom IoT rule
▪ In Rule, select Create a new rule identifying the CA registered in Register the CA to

the AWS IoT, e.g. JITR_CA
▪ Enter description
▪ Enter query statement for the CA, e.g.

SELECT * FROM

‘$aws/events/certificates/registered/f0ae05040a9604265cc6f9304782370

acd0b1f76c19ceea4560f41afb5e6f64f’

Where
f0ae05040a9604265cc6f9304782370acd0b1f76c19ceea4560f41afb5e6f64f is
the CA Certificate ARN in the IoT Core CA Certificate page as illustrated in the
figure, e.g.

arn:aws:iot:us-west-

2:132302955978:cacert/f0ae05040a9604265cc6f9304782370acd0b1f76c19

ceea4560f41afb5e6f64f

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 62

 EmSPARK Suite: CoreLockr Libraries User Guide

▪ Ensure the rule is enabled
+ “Function code”: use the python source code included in Appendix C: Lambda Function

In “Permissions”, the role has permissions to the following, as shown in the image:

+ iot.attach_principal_policy
+ iot.create_thing
+ iot.update_certificate
+ iot.attach_thing_principal
+ iot.list_thing_principals
+ iot.describe_certificate

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 63

 EmSPARK Suite: CoreLockr Libraries User Guide

9.4.7. Linux Development Environment: Configure and Build TLS AWS Example
Application

This example application, sli_dev, demonstrates the capabilities of the EmSPARK Suite for
supporting integration with cloud services such as Amazon Web Services. The application
uses the CoreLockr TLS IO API, CoreLockr Crypto API, CoreLockr Secure Certificates API and
keys and certificates stored in the TEE Key Store and Certificate Store. This example connects
to an AWS server and is intended for proof of concept only, not for commercial use.

The AWS embedded C SDK was modified to use the CoreLockr TLSIO API for TLS
communication with the AWS servers. The AWS SDK was originally downloaded from here:

https://github.com/aws/aws-iot-device-sdk-embedded-C

Version 3.0.1 (SHA ID: d039f075e1cc2a2a7fc20edc6868f328d8d36b2f)

In addition to the full git repo, the Suite provides a patch against the 3.0.1 version, located in
corelockr/examples/AWS/aws-iot-c/:

0001-Sequitur-CoreLockr-TLSIO-AWS-Example.patch

For additional information about the example, please see
corelockr/examples/AWS/README.txt.

To prepare the application:

+ Configure the specific MQTT host in the TLS AWS example application
+ Build the TLS AWS example application

User Instructions: Building and Installing the Application

+ Configure the Application
▪ In the development environment, in corelockr/examples/AWS/aws-iot-

c/samples/linux/sli_dev/aws_iot_config.h set AWS_IOT_MQTT_HOST to the
AWS URL configured Endpoint

+ Build the application executable
▪ In corelockr/examples/AWS/aws-iot-c/samples/linux/sli_dev execute make

to build the application binary, sli_test
+ Transfer sli_test to the board to a directory of your choice.

9.4.8. Board: Execute the TLS AWS Example Application
The application scope includes:
+ AWS connection
+ AWS subscription and publishing events

https://www.secedge.com/
https://github.com/aws/aws-iot-device-sdk-embedded-C

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 64

 EmSPARK Suite: CoreLockr Libraries User Guide

+ AWS shadow functionality
+ AWS shadow interoperability

On the board, change to the directory where sli_dev/sli_test is located to execute it. The
application will use the Device Certificate and the OEM Root CA in the TEE.

Usage for sli_test:

 -h – Host Address
 -p – Port
 -l – Path to LED light control
 -t – Test Type:

 1 – CONNECTION
 2 – SUBSCRIBE_PUBLISH
 3 – SHADOW FUNCTIONAL
 4 – SHADOW INTEROP

The application prints output on the device terminal. AWS events can be seen on multiple
modules including AWS IoT Core and CloudWatch Logs.

The –t switch option is required. The –h, -p and –l switches are optional and intended to
change the host, port and LED path configured in aws_iot_config.h for a given test type.

1. AWS connection

When the device connects to AWS for the first time, the Just in Time Registration is
performed. Based on the Lambda Function configured in AWS Console: Create a Lambda
Function, the Thing and Device Certificate are created in AWS.

On the device, the application prints the following messages:

./sli_test -t1

AWS IoT SDK Version 3.0.1- [Device ID: Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c]

Connecting...

Continuing...

Disconnecting

On AWS, the Device_Certificate device thing and certificate can be seen in IoT Core as
shown in the figure:

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 65

 EmSPARK Suite: CoreLockr Libraries User Guide

2. AWS Subscription and Publishing Events

AWS Subscription

./sli_test -t2

AWS IoT SDK Version 3.0.1- [Device ID: Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c]

Connecting...

Continuing...

Subscribing to TOPIC [$aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/TestSubPub]...

{ "message" : "Publishing message on: QOS0" }...

{ "message" : "Publishing message on: QOS1" }...

*****************Subscribe callback

Topic: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/TestSubPub{ "message" :

"Publishing message on: QOS0" }

Payload – { "message" : "Publishing message on: QOS0" }

Looping for subscriptions...

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 66

 EmSPARK Suite: CoreLockr Libraries User Guide

Publishing Messages

On the AWS console, select Test. On the MQTT client page, enter the topic for which the
device is registered and select Subscribe to topic. In this example, the topic is:

$aws/things/${iot:ClientId}/TestSubPub

e.g.

$aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/TestSubPub

To send messages from the AWS console to the device, enter the topic on the Publish
text box and select the Publish to topic button.

On the board, observe the messages from the AWS console

*****************Subscribe callback

Topic: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/TestSubPub{

 "message": "Hello from AWS IoT console"

}

Payload – {

 "message": "Hello from AWS IoT console"

}

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 67

 EmSPARK Suite: CoreLockr Libraries User Guide

3. AWS shadow functionality

./sli_test -t3

AWS IoT SDK Version 3.0.1- [Device ID: Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c]

Shadow Connect...

Subscribing to SHADOW...

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/get/accepted

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/get/rejected

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/delta

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/documents

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/accepted

Subscribe: $aws/things/Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c/shadow/update/rejected

Sleep..

Publishing...

Shadow published ‘update’ successfully

Yield...

Disconnecting

4. AWS shadow interoperability

The application uses the device shadow to retrieve and update a device LED state. The
application controls /sys/devices/platform/leds/leds/user/brightness. The path to
the LED can be modified in the aws-iot-config.h file.

During execution, on the device observe the green LED. To interact with the application, enter
1, 0 or x when requested. The application prints messages like these:

./sli_test –t4

AWS IoT SDK Version 3.0.1- [Device ID: Device

Certificate:8592523f614eb59a5e43fc57d59197f982bdec1c]

[iot_tls_init] – Host is av98lkolvdy9i-ats.iot.us-west-2.amazonaws.com

Shadow Connect...

Setting TLS IO State to OPEN

Subscribing to SHADOW...

led_state from shadow : 1

Current LED state is: ON

Please enter the desired state [1,0] – or x to exit:

..0....

Setting DESIRED state to: OFF

Setting _REPORTED_ STATE to: OFF

Current LED state is: OFF

Please enter the desired state [1,0] – or x to exit:

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 68

 EmSPARK Suite: CoreLockr Libraries User Guide

On AWS IoT Core, the shadow state is updated.

10. CORELOCKR SECURE STORAGE API
The CoreLockr Secure Storage API protects data at rest. It enables saving data as encrypted
persistent objects through the TEE. The persistent objects are encrypted with device specific
keys.

The API functionality includes:

+ Creation and writing of encrypted files
+ Opening and reading from encrypted files
+ Use of a password for these operations

In the Kit, corelockr/corelockr_storage contains:

+ lib, libclrf.a library
+ include, header files
+ ta, 5840EE82-131E-4259-BB1F2A9286DA48A8.stp associated TA
+ docs, for library documentation see ~/docs/html/index
+ README.txt, general API information
+ COPYRIGHT, copyright notice
+ example, application

This document describes the sample application in 10.1 Secure Storage.

10.1. Secure Storage Example
This example application illustrates features of the EmSPARK Suite, Secure Storage API, to
protect data at rest (it does not protect data from the operating system). The application
reads a secret from the console and writes the data as a persistent object through the TEE.
Optionally a password can be provided. Then, the application prints the contents of the
encrypted file. If a password was provided during the file creation, it is required to show the
file contents.

10.1.1. Background

Software and Data Requirements

Secure Storage example application, corelockr/corelockr_storage/example

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 69

 EmSPARK Suite: CoreLockr Libraries User Guide

Building and Installing

Change to the corelockr/corelockr_storage/example/ directory and execute make to
build the application, storage_example. Transfer the executable to the board.

10.1.2. Executing the Example
To write/create an encrypted file (i.e. a persistent object in the TEE’s store), the example
application receives the following parameters:

storage_example w <filename> "<data>" [password (optional)]

where “w” is the application command for writing a file, filename is the name of the written
persistent object in the TEE’s store and “data” is the secret to be stored. password is an
optional parameter that if provided becomes required for decryption of contents.

To show the encrypted contents:

storage_example r <filename> [password (optional)]

where “r” is the application command for reading, filename is the name used when the
encrypted file was written and password is required if used during encryption.

Create and Write Encrypted Files

On the board, change to the directory where storage_example was transferred and
execute

./storage_example w myfilename "This is a secret" mypassword

In this case, the file is written using a password. If writing the file succeeds, the application
prints:

Secret written to: myfilename

The file name provided by the user (myfilename) is not visible in the filesystem, file names
are only numbers and their contents are encrypted.

To create/write a file with no password, execute:

./storage_example w myfilename2 "This is a new secret"

Successful operation prints the output on the console, i.e.

Secret written to: myfilename2

Note that an attempt to overwrite without a password a file name that was originally
created with a password will return an error. For example, executing:

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 70

 EmSPARK Suite: CoreLockr Libraries User Guide

./storage_example w myfilename "This is a secret"

returns:

Could not open myfilename: 0xffff0102

Decrypt Files and Print Data

To show the contents of the file encrypted with a password execute:

./storage_example r myfilename mypassword

If the decryption is successful, the application prints on the console:

Secret retrieved: This is a secret

In the previous step, the file was created with a password, therefore the password is
required. If the correct password is not provided the corresponding error is printed on the
console, e.g.

Could not open myfilename: 0xffff0102

For a complete list of return codes, see the Secure Storage API documentation.

To show the contents of the file encrypted without a password execute:

./storage_example r myfilename2

which returns

Secret retrieved: This is a new secret

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 71

 EmSPARK Suite: CoreLockr Libraries User Guide

APPENDIX A: SUPPORTED CRYPTOGRAPHIC OPERATIONS

The following table details the cryptographic operations supported with the EmSPARK Suite.

Certificate
management
Store certificate in TEE
Delete certificate from
TEE
Update certificate in
TEE
Verify signature of a
certificate
Add certificate to CRL

Key management
Create key in TEE
keystore
Load key from a TEE
keystore
Save key in a TEE
keystore
Delete key in a TEE
keystore

Cryptographic
operations

Hashing MD5

 SHA1

 SHA224

 SHA256

 SHA384

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 72

 EmSPARK Suite: CoreLockr Libraries User Guide

 SHA512

Symmetric crypto
functions AES_ECB_NOPAD

 AES_CBC_NOPAD

 AES_OFB

 AES_CTR

 AES_CFB_128

 AES_XTS_NOPAD

 DES3_ECB_NOPAD

 DES3_CBC_NOPAD

 DES3_OFB

 DES3_CFB_128

MAC functions AES_CMAC

 HMAC_MD5

 HMAC_SHA1

 HMAC_SHA224

 HMAC_SHA256

 HMAC_SHA384

 HMAC_SHA512

Authenticated
encryption AES_GCM

 AES_CCM

Asymmetric signature
functions RSASSA_PKCS1_V1_5_MD5

 RSASSA_PKCS1_V1_5_SHA1

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 73

 EmSPARK Suite: CoreLockr Libraries User Guide

 RSASSA_PKCS1_V1_5_SHA224

 RSASSA_PKCS1_V1_5_SHA256

 RSASSA_PKCS1_V1_5_SHA384

 RSASSA_PKCS1_V1_5_SHA512

 RSASSA_PKCS1_PSS_MGF1_SHA1

 RSASSA_PKCS1_PSS_MGF1_SHA224

 RSASSA_PKCS1_PSS_MGF1_SHA256

 RSASSA_PKCS1_PSS_MGF1_SHA384

 RSASSA_PKCS1_PSS_MGF1_SHA512

 DSA_SHA1

 DSA_SHA224

 DSA_SHA256

 ECDSA_P192

 ECDSA_P224

 ECDSA_P256

 ECDSA_P384

 ECDSA_P521

Asymmetric Encryption
Functions RSAES_PKCS1_V1_5

 RSAES_PKCS1_OAEP_MGF1_SHA1

 RSAES_PKCS1_OAEP_MGF1_SHA224

 RSAES_PKCS1_OAEP_MGF1_SHA256

 RSAES_PKCS1_OAEP_MGF1_SHA384

 RSAES_PKCS1_OAEP_MGF1_SHA512

 RSA_NOPAD

Key Derivation DH_DERIVE_SHARED_SECRET

 ECDH_P192

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 74

 EmSPARK Suite: CoreLockr Libraries User Guide

 ECDH_P224

 ECDH_P256

 ECDH_P384

 ECDH_P521

 ALG_HKDF_MD5

 ALG_HKDF_SHA1

 ALG_HKDF_SHA224

 ALG_HKDF_SHA256

 ALG_HKDF_SHA384

 ALG_HKDF_SHA512

 ALG_CONCAT_KDF_SHA1

 ALG_CONCAT_KDF_SHA224

 ALG_CONCAT_KDF_SHA256

 ALG_CONCAT_KDF_SHA384

 ALG_CONCAT_KDF_SHA512

 ALG_PBKDF2_HMAC_SHA1

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 75

 EmSPARK Suite: CoreLockr Libraries User Guide

APPENDIX B: POLICY

Sample policy:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "iot:Connect",

 "Resource": "arn:aws:iot:us-west-

1:123456789012:client/${iot:ClientId}"

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:UpdateThingShadow",

 "iot:GetThingShadow"

],

 "Resource": "arn:aws:iot:us-west-

1:123456789012:topic/$aws/things/${iot:ClientId}/shadow/*"

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:Publish",

 "iot:Receive"

],

 "Resource": "arn:aws:iot:us-west-

1:123456789012:topic/$aws/things/${iot:ClientId}/*"

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:Subscribe"

],

 "Resource": [

 "arn:aws:iot:us-west-

1:123456789012:topicfilter/$aws/things/${iot:ClientId}/shadow/*",

 "arn:aws:iot:us-west-

1:123456789012:topicfilter/$aws/things/${iot:ClientId}/*"

]

 }

]

}

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 76

 EmSPARK Suite: CoreLockr Libraries User Guide

APPENDIX C: LAMBDA FUNCTION
import os

import base64

import binascii

import json

import boto3

import botocore

iot = boto3.client(‘iot’)

client = boto3.client(‘iot-data’)

ZT_THING_TYPE_NAME = ‘sequitur-zero-touch-kit’

def lambda_handler(event, context):

 # Get evironment and event data

 region = os.environ[‘AWS_DEFAULT_REGION’]

 account_id = event[‘awsAccountId’]

 certificate_id = event[‘certificateId’]

 print("Received event: " + json.dumps(event, indent=2))

 # Get device certificate information

 response = iot.describe_certificate(certificateId=certificate_id)

 certificate_arn = response[‘certificateDescription’][‘certificateArn’]

 # Convert the device certificate from PEM to DER format

 pem_lines = response[‘certificateDescription’][‘certificatePem’].split(‘\n’) # split

PEM into lines

 pem_lines = list(filter(None, pem_lines)) # Remove empty lines

 raw_pem = ‘’.join(pem_lines[1:-1]) # Remove PEM header and footer and join

base64 data

 cert_der = base64.standard_b64decode(raw_pem) # Decode base64 (PEM) data into DER

certificate

 # Find the subjectKeyIdentifier (quicker than a full ASN.1 X.509 parser)

 subj_key_id_prefix = b’\x30\x1D\x06\x03\x55\x1D\x0E\x04\x16\x04\x14’

 subj_key_id_index = cert_der.index(subj_key_id_prefix) + len(subj_key_id_prefix)

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 77

 EmSPARK Suite: CoreLockr Libraries User Guide

 subj_key_id =

binascii.b2a_hex(cert_der[subj_key_id_index:subj_key_id_index+20]).decode(‘ascii’)

 print(‘Certificate Subject Key ID: {}’.format(subj_key_id))

 # Find CN in subject name.

 cn_id_prefix = b’\x06\x03\x55\x04\x03’

 cn_id_index = cert_der.index(cn_id_prefix) + len(cn_id_prefix) + 1

 cn_id_len = int.from_bytes(cert_der[cn_id_index:cn_id_index+1], "little") + 1

 issuer_cn_bytes = cert_der[cn_id_index+1:cn_id_index+cn_id_len]

 issuer_cn_string = issuer_cn_bytes.decode("utf-8")

 print(‘Certificate issuer CN: {}’.format(issuer_cn_string))

 # 2nd call, index at num-bytes

 cn_id_index = cert_der.index(cn_id_prefix, cn_id_index) + len(cn_id_prefix) + 1

 cn_id_len = int.from_bytes(cert_der[cn_id_index:cn_id_index+1], "little") + 1

 cn_bytes = cert_der[cn_id_index+1:cn_id_index+cn_id_len]

 cn_string = cn_bytes.decode("utf-8")

 cn_string=cn_string.replace(‘ ‘,’_’)

 print(‘Certificate subject CN: {}’.format(cn_string))

 # extract Serial Number

 sn_id_prefix = b’\xa0\x03\x02\x01\x02\x02’

 sn_id_length_index = cert_der.index(sn_id_prefix) + len(sn_id_prefix)

 sn_id_length = int.from_bytes(cert_der[sn_id_length_index:sn_id_length_index+1],

"little")

 sn_id_bytes = cert_der[sn_id_length_index+1:sn_id_length_index+sn_id_length+1]

 serial_number_string = binascii.b2a_hex(sn_id_bytes).decode(‘ascii’)

 print(‘Serial number: {}’.format(serial_number_string))

 # Thing name and MQTT client ID will be the subject key ID

 thing_name = cn_string + ":" + subj_key_id

 client_id = thing_name

 thing_attributes = {

 ‘attributes’: {

 ‘serial_number’ : serial_number_string,

 ‘initialized’ : ‘0’,

 ‘subject_cn’ : cn_string

https://www.secedge.com/

EDES-0002-Rev G.

©2024 SecEdge™ | PO Box 1127 | Issaquah, WA 98027 USA | p: +1 425 654 2048 | www.secedge.com 78

 EmSPARK Suite: CoreLockr Libraries User Guide

 }

 }

 # Create a thing (no error if it already exists)

 response = iot.create_thing(

 thingName=thing_name,

 attributePayload=thing_attributes)

 # Attach policy to device certificate. Certificates must have a policy

 # before they can be activated.

 Iot.attach_principal_policy(

 policyName=’GlobalDevicePolicy’,

 principal=certificate_arn)

 # Activate the certificate to allow connections from that device

 response = iot.update_certificate(

 certificateId=certificate_id,

 newStatus=’ACTIVE’)

 # Attach certificate to thing

 response = iot.attach_thing_principal(

 thingName=thing_name,

 principal=certificate_arn)

https://www.secedge.com/

	1. Table of Contents
	2. CoreLockr(Libraries
	2.1. Acronyms and Terminology
	2.2. EmSPARK(Suite Contents
	2.3. CoreLockr(APIs
	2.4. Preinstalled Keys and Certificates in the TEE

	3. CoreLockr(Crypto API
	3.1. Key Management
	3.2. Key Store
	3.3. Access to Provisioned Keys
	3.4. Cryptographic operations
	3.5. Opaque Keys
	3.6. Opaque Objects
	3.7. Opaque Keys and Opaque Objects Usage
	3.8. Examples
	3.8.1. Key Management and Provisioned Key Access Example
	Software and Data Requirements
	Building and Installing
	Flow and Code Walkthrough
	Executing the Example

	3.8.2. Key Store Example
	Software and Data Requirements
	Building and Installing
	Flow and Code Walkthrough
	Executing the Example

	4. CoreLockr(Crypto API – Opaque Keys
	4.1. Creating and Storing Opaque Keys
	4.1.1. Creating Opaque Key Packages
	4.1.2. Saving Opaque Key on Device Key Store

	4.2. Opaque Key Example

	5. CoreLockr(Crypto API – Opaque Objects
	5.1. Creating and Decrypting Opaque Objects
	5.2. Opaque Object Example
	Software and Data Requirements
	Building
	5.2.1. Executing the Example

	6. CoreLockr(Payload Verification and Key Utilities API
	6.1. Payload Verification Example
	6.1.1. Background
	Software and Data Requirements
	Building and Installing

	6.1.2. Executing the Example
	Create a Signed Payload Package in a System External to the Board
	Create a Signed Package on the Board
	Verify a Package, Successful Verification Scenarios
	Verify a Package, Verification Failure Scenarios

	6.2. Key Utilities Example
	6.2.1. Background
	Software and Data Requirements
	Building and Installing

	6.2.2. Executing the Example
	Key Utilities Example
	Opaque Key Example

	7. CoreLockr(Crypto OpenSSL Engine API
	7.1. OpenSSL with Crypto in TrustZone for Secure Communication Example
	7.1.1. Background
	Software and Data Requirements
	Building and Installing

	7.1.2. Executing the Example
	Start the Server
	Start the Client

	7.2. OpenSSL with Crypto in TrustZone for Cryptographic Functions Example
	7.2.1. Background
	Software and Data Requirements
	Building and Installing

	7.2.2. Executing the Example
	Load Engine Code Walkthrough

	7.3. OpenSSL Using Named Keys Stored in the TEE Example
	7.3.1. ECDSA Key Creation and Storing in the Key Store
	Software and Data Requirements
	Building and Installing
	Executing the Example
	Flow and Code Walkthrough

	7.3.2. Named Key Use with OpenSSL
	Software and Data Requirements
	Building and Installing
	Executing the Example
	Flow and Code Walkthrough

	7.3.3. Named Key Deletion from the Key Store
	Software and Data Requirements
	Building and Installing
	Executing the Example
	Flow and Code Walkthrough

	7.4. OpenSSL Command Line

	8. CoreLockr(TLS IO API
	Kit Contents
	8.1. Communication with a Server Example
	Building and Installing
	Flow and Code Walkthrough
	Executing the Example

	9. CoreLockr(Secure Certificates API
	Kit Contents
	9.1. Provisioned Certificates
	9.2. Certificate Store
	9.3. Certificate Authority Management Example
	9.3.1. Background
	Software and Data Requirements
	Building and Installing

	9.3.2. Executing the Example
	Add a Certificate Authority to the TEE
	Verify the Certificate Authority
	Verify Certificates against the CA
	Add a Certificate to the Certificate Revocation List (CRL)
	Update a Certificate
	Revoke a Certificate Authority
	Extract Certificates from the TEE
	Return Codes

	9.4. Connecting to AWS IoT Core
	9.4.1. Background
	9.4.2. Linux Development Environment: Prepare Application and Key for Certificate Updates
	9.4.3. Device: Extract OEM Device Certificate Signing Request
	9.4.4. Linux: Prepare User’s OEM Root Certificate and OEM Device Certificate
	Overview
	User Instructions: Detail

	9.4.5. Board: Customize the Device Certificate and OEM Root Certificate
	User Instructions: Detail

	9.4.6. AWS Console: Configure User’s Account for AWS TLS Example
	1. Register the CA to the AWS IoT
	2. AWS Console: Create a Policy
	3. AWS Console: Create a Lambda Function

	9.4.7. Linux Development Environment: Configure and Build TLS AWS Example Application
	User Instructions: Building and Installing the Application

	9.4.8. Board: Execute the TLS AWS Example Application
	1. AWS connection
	2. AWS Subscription and Publishing Events
	3. AWS shadow functionality
	4. AWS shadow interoperability

	10. CoreLockr(Secure Storage API
	10.1. Secure Storage Example
	10.1.1. Background
	Software and Data Requirements
	Building and Installing

	10.1.2. Executing the Example
	Create and Write Encrypted Files
	Decrypt Files and Print Data

	Appendix A: Supported Cryptographic Operations
	Appendix B: Policy
	Appendix C: Lambda Function

